

THRUSTMASTER®

HOTAS COUGAR

REFERENCE BOOKS

Version 1.4b

THRUSTMASTER®

1 HOTAS Cougar Reference Book

INTRODUCTION

Greetings!

Well, first of all, CONGRATULATIONS and THANK YOU for investing in the
Thrustmaster HOTAS Cougar! The massively powerful, ruthlessly precise
controller you now have in your hands is the proud result of a full two years of
dedicated studies and research, led by the profound wish to create a cutting-edge
simulation game controller that would match the most demanding gamers’
expectations. And here we have it – behold the proud heir of the FLCS and F-22
PRO series! However, much as the challenge of creating a successor worthy of
the previous series of controllers sounded like fun to all concerned, successfully
bringing this deity to life proved to be a lot more than just… erm, challenging –
and that’s an understatement!

When this insane project first began, Thrustmaster was faced with two choices: to
effectively just upgrade the existing sticks, retaining and expanding their existing
functionalities, or, to start again from scratch, and invent a completely updated,
advanced product. Obviously, by choosing the latter, Thrustmaster had also
chosen to follow the hardest possible path. For what unfathomable reason? Quite
simply because whenever Thrustmaster had chosen to release a new HOTAS
controller, the new joystick had always taken quality to a higher level, and set
every limit far beyond what the standard at the time had to offer – so, with the
HOTAS Cougar, the time was nigh to redefine what a true-to-form hardcore
joystick was.

The result of endless brainstorming sessions and sleepless nights is this highly
realistic, incredibly versatile, awesomely flexible and monumentally potent
controller – beyond all doubt, with the jaw-dropping collection of yet unmatched
features such as interchangeable handles, advanced (yet deceptively easy)
programming capabilities, dead simple plug’n’play connectivity, added to the
outrageous number (and weight) of die-cast parts make the proud HOTAS
Cougar the real deal for the years to come.
This brute is also a success for the whole simulation-addicted gaming
community – believe us, this deity is no cheap, fancy, lightweight contraption
optimised for the coin-ops of yore, but a hardcore extravaganza F-16 control
replica, designed for those who demand nothing short of the best - truly the
ultimate high-end flight sim controller that will leave both hostiles and rivaling
flyers wishing they had opted for a career as ground personnel!

THRUSTMASTER®

2 HOTAS Cougar Reference Book

Of course, this beast would never have seen the light of day without all the
support and encouragement we received from people we met at shows, who
chatted with us on forums and had lengthy e-mail discussions with us – so, to all
you guys out there, thanks for being so supportive to us! And let us not forget the
people out there who really deserve some extra special thanks from us; first of all,
the staff at Thrustmaster/Guillemot who worked on this project, and the beta
testers, who did a great job hunting all those bugs down, and experimented with
this hazardous equipment at the risk of their lives… Also, thanks to our friends
and families, who put up with us all the time we were working on this project!

Ok, enough romance for now, let’s get real!

If you are experienced at all with the previous range of Thrustmaster flight
simulation gear, the power of the HOTAS Cougar will leave you feeling awed –
and yet, also quite at home. In fact, some features may actually look the same,
but don’t be fooled – it’s all new material in here, and as an acquainted flight sim
user, you, better than anyone else, will be the person to fully assess all the hard
work we put into this to provide you with unheard of new might.

With this new release, we have improved and innovated on all points -
mechanical, electronic and software components. Whereas providing a more
user-friendly controller than the seven year-old joysticks was not to prove to be
excessively difficult, what we have done is chosen to give every gamer out there,
and even newbies, the ability to make the most out of this highly resourceful
brute. Indeed, the release of Microsoft Windows has made the introduction of
HID-compliant controllers a reality – plug’n’play joysticks that don’t require any
particular configuration to operate. Well, this is exactly what the HOTAS Cougar
has in store for you – just plug it in, and play your favourite games… It’s that
simple.

Well, that’s cool news - but a lot of you, who have bought the HOTAS Cougar for
the advanced programming capability it claims, are expecting a lot more from us
than just a great controller. So check – here it comes! To match the unequalled
precision it provides, the HOTAS Cougar offers all the same programming
features as the F-22… and much, much more, as you will learn by reading
through this Reference Book. The programming features we will be broaching
hereinafter are in fact so powerful and comprehensive, that they will enable you to
optimise any of your programs to make the most of each game, or even to correct
bugs or missing functions in a simulator. So, the best way to go about discovering
them and taking them all in (that is, without incurring a massive migraine and
code-induced nightmares) is simply to read carefully and attentively through this
literary milestone of a book, and give yourself the time to think, “OK, now what am
I expected to do with this?”

THRUSTMASTER®

HOTAS Cougar Reference Book 3

As outlined above, this document is what we refer to more as a “Reference Book”,
rather than your usual run-of-the-mill “Manual”. Anyone who's been used to or seen
the manuals for the original F-16 FLCS, TQS and F-22 PRO controllers will appreciate
the difference between them and this reference book. It contains everything you need
to know from setting up your controllers, using the Cougar Control Panel software,
learning the basics of Cougar programming right through to detailed information on
every aspect of the programming statements that set the HOTAS Cougar aside from
other programmable controllers. Backing up this manual are highly detailed help files,
wizards, tutorials and other useful and intuitive applications within the programming
software. At the end of the day, we think we've provided the most comprehensive
documentation that has ever shipped with any controller.

Be under no illusions about the HOTAS Cougar and this reference book - this is a
hardcore, state-of-the-art controller. And this reference book does have sections
and statements that you may want to read over more than once. But one of the
reasons why this manual is so exhaustive is that we have been acutely aware that
with the previous TM controllers, people found the manual too brief and hence the
controllers too difficult to get into. You will therefore find that this manual is very
easy to read, and introduces everything gently, and simply. It's very kind on those of
you who just want some basic knowledge about a statement or feature, as well as
providing comprehensive and detailed information for those that want it. Whatever
your level, we've got you covered :) So, if you’re using the HOTAS Cougar for the
first time, we definitely suggest that you take the time to read through the first
sections in this book, or you will very likely never be able to make the most of the
HOTAS Cougar. The HOTAS is a very flexible programmable device indeed,
leaving you several ways and offering many tools to attain one same result - but
beware, it nonetheless boils down to programming, and on these grounds, the more
logical and methodical you are, the better you will fare.

Without further ado, well - it’s over to you now! Read on, make the most of this
ultimate controller, and show those hostiles what the HOTAS Cougar is about!

For a Spanish translation of this book, please visit:
http://www.escuadron111.com

For a French translation of this book, please visit:

http://www.checksix-fr.com/

For a Dutch translation of this book, please visit:
http://thrustmaster.vanree.net/

For a German translation of this book, please visit:

http://www.thrustmaster-x-files.de/

For a Russian translation of this book, please visit:
http://www.hotas.ru

THRUSTMASTER®

4 HOTAS Cougar Reference Book

ACKNOWLEDGEMENTS

Our deepest thanks goes out to the following people and websites for all their
help and support in the course of this massive project – cheers to you all!

Beta testers

Olivier "Red Dog" Beaumont Jan-Albert "Anvil" van Ree
Robin "Emacs" Breyl James "Nutty" Hallows

Company and squadron

Mark “Frugal” Bush & frugalsworld.com

Wingmen-alliance.com Combatsim.com
Escuadron 111.com Ubi Soft
Microsimulateur Checksix-fr.com
SimHQ.com Dogfighter.com
Sim-arena.com Desktopsims.com
Aimsworth Coproration Gamekult.com

Fast jet Flight Simulation (a.k.a. HAM technologies)

Special Thanks

Len "Viking1" Hjalmarson Guillaume "Ghostrider" Houdayer
Matt Wagner Oleg Maddox
James R Campisi Jim Staud
Flavien "Vox" Duhamel Jean-Dominique "Bing" Belin
François Pimenta Emmanuel "Judy" Durant
David "Micro" Vely Thomas "Doloop" Coulomb
Philippe "Twech" Dezeure Denis "Dugin" Blary
Philippe "Jag" Dubois David "Zip" Pierron
Lew/+Silat Ulf Muckel
Rob Coppock Hal Bryman
Laurent Espinasse Jose "Oso" Benito
Fernando Oscar Garcia Minguillán Stanislav "huMMer" Vartanian

THRUSTMASTER

HOTAS COUGAR

CONTROL PANEL (CCP)
REFERENCE BOOK

THRUSTMASTER®

6 HOTAS Cougar Reference Book

INTRODUCTION ... 7
AXIS PROFILES ... 8

DEFAULT .. 8
SAVE ... 8
LOAD ... 8
DELETE ... 8

JOYSTICK MODES .. 9
AXIS RESPONSE .. 9

AXIS PARAMETERS SECTION ... 10
AXIS PARAMETER BUTTONS .. 10

Apply Button .. 10
Retrieve Button .. 10

AXIS SETUP TAB ... 11
Changing the Axis Setup ... 11
Reversing The Direction of an Axis ... 14
Locking an Axis ... 14
Changing Windows Axes States ... 15

AXES UNDER PHYSICAL SETUP ... 16
AXES UNDER "ENABLE WINDOWS AXIS STATES" SETUP 17
AXIS SHAPING TAB ... 17

Dead Zone Information .. 18
Calibration Center.. 20
Axis Trim .. 20
Curve Setting ... 22

STARTUP & CALIBRATION TAB .. 24
Startup Options.. 24
Calibration ... 25
Manual Calibration... 27

ACTIONS AND OTHER OPTIONS .. 28
RESTART DEVICE .. 28
BUTTON & AXIS EMULATION ... 28
DOWNLOAD TO DEVICE ... 28
POLL DEVICE ... 30
HIDE / TASKBAR ICON FUNCTIONALITY .. 30

THRUSTMASTER®

HOTAS Cougar Reference Book 7

Introduction

The HOTAS Cougar is a virtually driverless joystick solution, that does not require
any programs to run in the background to apply different axis settings, or to
perform emulation of any sort. For this reason, it is important that the joystick
itself is aware of all changes being made to the axes, and therefore, other
applications such as CTFJ (Bob Church’s Centering Tool For Joysticks), and the
Windows Calibration routine should not be used - if they are, many advanced
changes to the axes’ calibration will produce varied results.

PLEASE NOTE: DO NOT USE WINDOWS CALIBRATION TO CALIBRATE
THE HOTAS COUGAR. INSTEAD USE THE HOTAS COUGAR CONTROL
PANEL TO MANUALLY CALIBRATE THE HOTAS COUGAR.

The HOTAS Cougar Control Panel (CCP) application is used to change various
parameters for the output of the HOTAS Cougar, ranging from the mapping of
axes to the different output modes of the Joystick (emulation mode, Windows
mode…). What follows in this reference book is a button-by-button explanation
of the application, and how you can expect changes applied to these buttons to
be reflected in the operation of the Joystick.

To display the settings that are currently active in the Joystick, open the HOTAS
CCP while the Joystick is connected.

Figure 1: HOTAS Cougar Control Panel in the default configuration

THRUSTMASTER®

8 HOTAS Cougar Reference Book

Axis Profiles

Profiles are used to quick-load previously defined configurations into the HOTAS
CCP and Joystick. In the Profiles section of the HOTAS CCP, four buttons are
available: “Default”, “Load”, “Save” and “Delete”, all of which are explained in the
sections below.

DEFAULT

Clicking the Default button displays the Default parameters which are used by the
Joystick in Windows mode. This includes all axes mapped according to DirectX
standards, most axes in the positive defined direction, upper and lower dead
zones of 5%, centre dead zones of 7%, linear curve settings (0), base of curve
centred, and the “apply enable/disable Windows axes states” disabled. If the
Joystick is connected and the screen display does not make any sense, the best
course of action is to click on the Default button, and perform the changes from
there.

SAVE

Clicking on the Save button saves the current configuration, which has been
defined in the Axes Parameters section, to the HOTAS/Profiles folder, with the file
extension ’.TMC’ (Thrustmaster Configuration). If any Calibration has been
performed, it will also be saved in this file. Saving profiles this way means that
different axes parameter preferences can be saved for different games, and can
be loaded for future use.

LOAD

Clicking the Load button loads the saved configuration profile into the graphical
display (the tabs). This does not however load the file into the Joystick;
performing this action still requires you to click on the Apply button, described
further on in this reference book.

DELETE

This button is used to delete a profile.

THRUSTMASTER®

HOTAS Cougar Reference Book 9

Joystick Modes

The HOTAS CCP allows you to set the Joystick modes pertaining to the Axis
Parameters, Calibration Options, and Emulation features. Setting these Joystick
modes does not require you to click on the Apply button, as any change in the
Axis response mode will automatically instruct the Joystick to change modes.

AXIS RESPONSE

In Default mode, the Joystick will use the default axis setup and shaping data.
This data is always loaded into the Joystick, and is used whenever the Joystick is
connected - with the exception of the numbered axis buttons, should the last
download have specified to enable the visible status (this is further explained in
the “Changing Windows Axes States” section). When the Axis Response feature
is set to User Defined Mode, the Joystick will use the following data, as you
specified:

• Axis Mapping
• Reversing Data
• Locking Data
• Curve Information
• Base of Curve
• Dead Zone Information
• Trim Settings

For information on the Calibration options, please see the section on Calibration.
For information on the Emulation modes, please see the section on Button & Axis
emulation.

THRUSTMASTER®

10 HOTAS Cougar Reference Book

Axis Parameters Section

The HOTAS CCP application features three tabs: the Axis Setup Tab, the Axis
Shaping tab and the Startup & Calibration tab. Performing any changes to either
of these three tabs will not cause the associated action to be performed
immediately by the Joystick; indeed, any changed parameters must first be
applied to the Joystick, and the Axis Response must be set to User mode before
the Joystick will use this new information. To better follow with the explanations
given, first open the HOTAS CCP, and click on the Default profile button.

AXIS PARAMETER BUTTONS

The Axis Parameter section (excluding the aforementioned tabs) contains two
buttons: “Retrieve” and “Apply”. Their functionality and uses are explained in the
following sections.

Apply Button

The Apply button allows you to download the configuration parameters described
in the Axis Parameters section to the Joystick. Until you actually perform this
operation, the Joystick has no knowledge of any changes applied in the Axis
Parameters tabs, and the Apply button will download whatever parameters are
currently displayed or defined in the tabs. For the Joystick to be able use this
downloaded information, the Axes Response must be set to User Mode, which is
performed automatically by clicking on the Apply button.

Retrieve Button

The Retrieve Button is used to upload the configuration currently saved in the
Joystick. If any of the parameters are changed in Emulation mode, these can be
reflected by performing a Retrieve operation, and by checking the appropriate
section. The HOTAS CCP application automatically performs a Retrieve
operation on startup, to display the Joystick’s current configuration; if the Joystick
is not connected, an error message is displayed, and the Default profile is shown.
By clicking on the Retrieve button, you can also view the Joystick’s current mode.

THRUSTMASTER®

HOTAS Cougar Reference Book 11

AXIS SETUP TAB

Several functions are available on the Axis Setup Tab, and their respective
purposes can be summarised as follows:

• Changing Axis Setup
• Reversing the direction of an axis
• Locking the values of a particular axis
• Changing the axes that are recognised by Windows

These functions are explained in detail in the respective following sections.

Changing the Axis Setup

If you need a particular axis directly to control a different axis in a specific
configuration, the easiest way to accomplish this will be to change the axis’ setup.
When loaded in its default format with only the TQS (Throttle) connected, the axis
setup will appear as such:

Figure 2: Axis Setup Tab in Default configuration

THRUSTMASTER®

12 HOTAS Cougar Reference Book

The numerous buttons represented in the centre of the Axis Mapping tab show
the currently selected mapping configuration; this shows that the X axis is
mapped as the first axis, the Y axis as the second, the Throttle axis as the third,
etc… If we want the second axis (the DirectX Y axis) to be controlled by the
throttle (which is often quite handy for racing games), we only need to click on the
Throttle’s row in the second column, and the window will change appearance to
look like this:

Figure 3: Axis Setup Tab with the Throttle knob as the Y Axis

As can be seen, the Throttle axis has been assigned to the second position, and
the Y axis has taken the Throttle axis's place as the third axis. All axis swapping
operations can be performed this way, and although windows will “see” the axes
in their changed state, all axis programming inside the joystick - including all
reverse, curve, dead zone, and emulation programming - will remain specific to
the physical axis; therefore, if the Throttle is programmed to have a precise curve,
and is then swapped with the Y axis, the Throttle will control the Y axis in exactly
the same way as it controlled the Throttle axis.

THRUSTMASTER®

HOTAS Cougar Reference Book 13

Notice that the background of the checked buttons in the sixth, seventh and
eighth column are grayed, as opposed to the others (which are light blue).
This is because in this configuration the RCS (rudder and toe brakes) are not
connected. The buttons with the light blue background indicate the axes which
are physically connected. To have the X and Y axes controlled by the Microstick,
the Axis Setup tab would look like this:

Figure 4: Axis Setup Tab with the Microstick controlling the X & Y Axes

THRUSTMASTER®

14 HOTAS Cougar Reference Book

Reversing The Direction of an Axis

To reverse the direction of an axis, click on the desired button with a plus sign (or
minus sign) and it will toggle the direction of the axis. In the case where you
would like to change the direction of the Y axis, the appearance of the Axis Setup
tab would be as follows.

Figure 5: Axis Setup Tab with Y Axis reversed

Locking an Axis

On the right side of each axis name is a lock-shaped icon. If this “lock” is open
and is green in colour, then the axis is “unlocked” and will behave normally. If the
lock is closed and red in colour, then the corresponding axis is “locked”, and its
value cannot be changed. To toggle the state of the lock, click on it, and it will
switch between the two states described above.

THRUSTMASTER®

HOTAS Cougar Reference Book 15

Changing Windows Axes States

This title may not accurately reflect this section’s utility, but without getting too
technical, it’s still the best description of the following section’s function. Notice
that a button is located at the top of each column, and in Default mode, buttons 9
and 10 have a red not-circle in front of the numerical text – these buttons are
depicted below:

Figure 6: The "numbered axis buttons" located on Axis Setup Tab

Each of these buttons represents a different DirectX axis, these axes being:

Axis Number DirectX Axis Name
1 X Axis
2 Y Axis
3 Z Axis
4 Rotational X Axis
5 Slider 0
6 Rotational Z Axis
7 Slider 1
8 Rotational Y Axis
9 <none available>
10 <none available>

Table 1: Axis Numbers to DirectX Names

In addition to the fact that you cannot enable the ninth and tenth axes, it is also
impossible to disable the first and second axes, since the Joystick drivers’
programming implies that a Joystick features at least these two axes. If you click
on any of the buttons numbered 3 through 8, the red not-circle will be toggled on
and off. When the Joystick is connected, the names of the axes, as well as the
number of axes as “seen” by Windows, are determined by one of two possible
sources:

1. The actual physical setup of the Joystick
2. The states of these “numbered buttons”

Explanations of these two points follow on the next page.

THRUSTMASTER®

16 HOTAS Cougar Reference Book

AXES UNDER PHYSICAL SETUP

What do we mean by the "physical setup" of the joystick? All this means is what
other controllers (e.g. throttle, rudders) are connected to the joystick, which in turn
defines how many axes Windows detects the Cougar as having. 6 physical
setups are available for the HOTAS.

1. Joystick is plugged in alone
2. Joystick is plugged in with the TQS attached
3. Joystick is plugged in with the regular 1 axis RCS attached
4. Joystick is plugged in with the new 3 axis RCS attached
5. Joystick is plugged in with the TQS and regular RCS attached
6. Joystick is plugged in with the TQS and new RCS attached

Each of these possibilities will display a different combination of axes for the
HOTAS inside of Windows. Below is a table representing all 6 of the
configuration possibilities listed above, and displaying which axes will be present
for each.

AXIS NAMES

X Y Z Rx SL0 Rz SL1 Ry

C
o
n
f
i
g
u
r
a
t
i
o
n

1 • •

2 • • • • •

3 • • •

4 • • • • •

5 • • • • • •

6 • • • • • • • •

THRUSTMASTER®

HOTAS Cougar Reference Book 17

AXES UNDER "ENABLE WINDOWS AXIS STATES" SETUP

Using the numbered buttons, you can change the axes which will be recognized
by Windows. The procedure to enable use of these buttons is listed below.

1. Select the desired axes which you would like Windows to “see” by
toggling the state of the individual numbered buttons (i.e. enabling or
disabling them), until the required configuration is reached.

2. Make sure that the “Apply enable/disable Windows axes states” check
box is selected.

3. Load the file into the Joystick by using the “Apply” button, and click
‘OK’ to perform a restart of the Joystick.

4. Now, the Joystick will be “seen” by Windows, featuring the axes you
specified.

The point of this is that even if you do not own Rudders, or the new Rudders set
(with toe brakes), we can make DirectX “believe” that either of these devices are
present, and then control their input values with any one of the available axes, or
even through an emulation file.

It is important to note here that the Joystick will load in the user-defined “Enable
Windows Axes States” mode as long as the last file downloaded to the Joystick
had the “Apply enable/disable Windows axes states” check box activated.

AXIS SHAPING TAB

The Axis Shaping Tab contains controls to modify more advanced Joystick
configuration features, and is very useful when it comes to enabling users to tune
each axis according to their own personal preferences. The “Axis to set” combo
box at the top of the tab selects the desired axis, among the ten possible axes,
whose properties you want to adjust. Once a parameter has been changed, the
associated change is graphically displayed on the graph located to the right of the
list of different parameters. The change in display is triggered by either switching
parameter categories, or by clicking on the Refresh button located to the top right
of the tab. The various adjustable parameters are as follows:

• Upper Dead Zone (UDZ)
• Lower Dead Zone (LDZ)
• Center Dead Zone (CDZ)
• Calibration Center
• Axis Trim
• Curve Settings (factor and base)

The parameters listed here can be enabled by selecting different Joystick output
modes.

THRUSTMASTER®

18 HOTAS Cougar Reference Book

Dead Zone Information

By changing the Dead Zone Information (UDZ is Upper Dead Zone, LDZ is Lower
Dead Zone, CDZ is Center Dead Zone), you can alter the inactive regions on
each axis. The effects of successive changes will be reflected in the graph to the
right-hand side of the area where the parameters are listed, dead-zone areas
being highlighted in red. All values have a maximum of 100%, where 100% is
approximately 30% of the actual axis movement on the Joystick. For instance,
the default value used internally by the Joystick is 1% of each of the dead-zone
areas, which gives a total of 3% of the complete axis travel. Below is a pictorial
representation of this tab:

Figure 7: Axis Shaping Tab with Default Parameters

In the above figure, small red regions are apparent to either side as well as at the
center. This plot shows the relationship between the physical position of the
joystick axes, and the actual values that will be provided to Windows, for use in
games and on your desktop. For reference, the horizontal axis of this graph
represents the values that the Joystick collects from its axes, with the minimum
value displayed on the left-hand side, in this plot. The vertical axis of the graph is

THRUSTMASTER®

HOTAS Cougar Reference Book 19

the actual output from the Joystick as it will be “seen” by Windows, with the
minimum value displayed at the bottom, in this plot. Notice that in the dead-zone
regions, the graph becomes a straight line, meaning that the output will be the
same for various inputs. The lower dead zone is located on the left-hand side of
the graph, and is a horizontal line; the upper dead zone is positioned on the right-
hand side of the graph, and is also a horizontal line. The next figure illustrates
what happens if we increase the CDZ value:

Figure 8: Axis Shaping Tab with Y axis CDZ increased

Figure 8 clearly shows that raising the Center Dead Zone value from 7% to 25%
has proportionately increased the red highlighted region at the center of the
horizontal axis, and the white horizontal line at the center represents the region of
the axis where the Joystick will be inactive. The upper and lower dead zones
react similarly.

THRUSTMASTER®

20 HOTAS Cougar Reference Book

Calibration Center

This value is the position that the Joystick axis will consider to be its central
position. If the specified Center Position value is lower than the Joystick’s current
physical central position, then the axis will appear to reach a higher value when
the Joystick is at rest in its central position. A similar result could also be attained
by adjusting the Trim value in order to offset the physical values that the Joystick
outputs; the Trim function’s main advantage over the Center position feature is
that Trim can be altered during emulation.

Axis Trim

The Trim function is used to offset the actual physical value of the axis to a new
value. For example, if the Joystick axis is at a physical position equaling 30%,
whereas Trim is set to –20%, then the actual position understood by the
computer will be 10%. The maximum Trim setting is +/- 50%; this means that
from the center position, it is possible to have the axis go from one end to another
by setting the Trim. This is demonstrated in the figures to follow.

Figure 9: Trim setting at maximum

THRUSTMASTER®

HOTAS Cougar Reference Book 21

With Trim applied to the Y axis, the reaction can be observed immediately. With
the axis at its physical center (the horizontal center), the output data that
Windows receives is the maximum Y axis value. If the Y axis is moved in a
direction increasing its value, there will be no reaction; if the Y axis is moved
away from its physical central position down to its minimum position, the
computer will observe that the axis’ values are decreasing, until they reach a
minimal output value, equal to the axis’ normal center position.

If we were to reduce Trim to its minimum value, the graph would look as follows:

Figure 10: Trim Setting at minimum

With this change applied, the Y axis value will be read as being minimal when the
Y axis is physically at its central position, and will be read as being at its center
when the Y axis physically is maintained at its maximum position.

THRUSTMASTER®

22 HOTAS Cougar Reference Book

Curve Setting

This setting can be adjusted to have the axis respond with a more exponential
feeling, i.e. a “curved” feel, instead of a regular linear feel. The Curve parameter
can have values between -32 and 32; however, setting several axes to such high
values will significantly slow down the operation of the Joystick. Notice that
values greater than 20, or smaller than -20 are not useful, and that the change in
the curve is not sufficient to even justify using such values.

We will first take a look at curves with a centered base - so what might be the
difference between a positive curve and a negative curve? Let’s look at the
response when curve settings of positive and negative 10 are applied.

The figure to the left represents the axis with a Curve setting of -10 (negative); as
can be seen, around the central position, very little change in the axis - almost
like increasing the central dead zone. The rate of change then increases quickly,
until the axis’ slope becomes almost vertical. This means that the Joystick will
offer enhanced responsiveness around the limits of this axis’ travel. The figure to
the right shows a graph of the axis with the Curve setting at 10, which appears to
almost be the previous setting reversed; the axis is much more responsive
around the physical central position, whereas at the extremities of the axis travel,
responsiveness is far lower - almost like increasing the upper and lower dead
zones.

THRUSTMASTER®

HOTAS Cougar Reference Book 23

The idea behind the ‘Base of Curve’ radio button is that although the response
curves of the Joystick and Microstick axes should be curved, as we saw in the
previous example, a full range ramp may however be more appropriate for axes
such as the toe brakes and throttle. Below are the graphs for Curve settings of
positive and negative five (as a value, ten is excessive), but with the Base of
curve setting set to Zero.

The figure to the left represents the graph for an axis with a negative 5 Curve
setting - notice how similar it is to the upper right section of the graph
representing the axis with a Curve setting of negative 10 and a centered Base of
curve. The Joystick will now react very slowly at the lower extreme of the axis, as
if an increased lower dead zone had been added to the axis, and its
responsiveness then increases until it reaches a peak at the upper limit of the
axis travel. To the right is a Curve with a setting of positive 5, its base being
Zero-based. Once again, notice how similar the entire graph for the Zero base
positive curve is to the upper right section of the Center-based positive curve.
Responsiveness increases near the physical minimum of the axis, and decreases
around the maximum. The upper limit of the axis looks as though we have an
increased upper dead zone.

THRUSTMASTER®

24 HOTAS Cougar Reference Book

STARTUP & CALIBRATION TAB

The startup and calibration tab contains information about how the Joystick will
behave when the computer starts up and calibration configuration. This tab is
separated into two sections, the top part is the startup options and the bottom part
is the calibration configuration. Each of these sections is described below.

Figure 11: Startup & Calibration Tab

Startup Options

There are three options that the Joystick can be set to automatically when the
computer starts up. These options are the Axis response, the Calibration mode
and to load a specific profile. The Joystick, by default, will load in default axis
response mode, auto calibrate mode and with the last profile that was
downloaded to the Joystick. To change the default, click on the desired options
and click on the ‘Save’ button. To choose a profile, click on the checkbox to load
a profile and then click on the ‘…’ button or type the profile name directly in the
edit box to the right of the ‘…’ button. Please note that the profile must exist in
the profiles subdirectory off the HOTAS directory. To set the startup options back
to the default, click on the ‘Default’ button.

THRUSTMASTER®

HOTAS Cougar Reference Book 25

Calibration

The Calibration section contains options to set the calibration mode, calibrate the
Joystick, retrieve the auto calibration data and to set the center positions of the
axes.

Choosing Auto or Manual calibration in the Calibration Mode option will
automatically switch the Joystick to the desired option. Please note that it is not
required to click on the ‘Apply’ button to apply the calibration mode – this happens
immediately.

In Manual calibration mode, the data used will be that which was loaded into the
Joystick after performing a Manual Calibration. This data is automatically
downloaded, along with the current axis parameters, for use after any Calibration
Routine is performed.

Auto calibration mode means that the Joystick will configure the axes to their
maximum positions as you move the axes to the extremes. Manual calibration
means that the Joystick will use the calibration data that was created by
performing the manual calibration routine, described later in this section. Please
note that the Joystick can not switch to Manual calibration mode if no manual
calibration has been performed. If the Joystick is reset (by reconnecting it, or
clicking on the Restart button) and is in Auto-calibrate mode, it is recommended
that you move all the Cougar axes (joystick, throttle, Range, Antenna, Microstick
etc) to their maximum and minimum positions, holding them at these positions for
about 3 seconds. This will allow the auto calibration to gather information from the
axes and accurately calibrate your controller axes.

Clicking on the “Get Auto Calibration” button before switching the “Calibration
Mode” from “Auto calibration” to “Manual calibration” copies the auto calibration
data to the current profile. You can now apply and save the current profile so that
the Joystick will use this data, and never proceed to adjust its values.

The Set Center Positions button is used to save a specific position of each axis
as the center position. If you wish to have the Joystick and the Range axes to
have different center positions than the ones given by auto calibration, then you
can press this button and specify the desired axes, shown below.

THRUSTMASTER®

26 HOTAS Cougar Reference Book

Figure 12: Saving the Joystick and Range Center Position

Once you press the ‘Save’ button, you will be prompted to move the specified
axes to your desired center position and then to press ‘OK’. This will now give
the specified axes new center positions.

THRUSTMASTER®

HOTAS Cougar Reference Book 27

Manual Calibration

The Manual Calibration button will bring up the Calibration Routine window,
shown below:

Figure 13: Manual Calibration Routine Window

Follow the directions given, pressing all buttons successively, and clicking on the
Next button when the axis has reached the position that is to be saved for that
particular step. For instance, if in the second state you move the Y axis to its
forward position and then click the Next button, the Joystick will save the position
that the Y axis was in at the time when you clicked the button. When you are
done with the calibration setup, the application will automatically send the
calibration information to the Joystick, along with all the data currently loaded into
the axis parameter section. This calibration data is saved, and can be saved to a
profile for later use.

Note that the axes that are not physically connected are grayed out. The
calibration routine will skip over the axes that are not connected. The progress
bar at the bottom left hand side of the Window indicates the ‘raw’ values of the
axis – it may not be possible to reach the maximum or minimum positions of the
progress bar. It is to be used as a guide to show the correct axis to be moved
and the correct direction.

THRUSTMASTER®

28 HOTAS Cougar Reference Book

Actions and other
options

In the Actions section there are three buttons: Restart Device, Button & Axis
emulation and Download to device. There are also options for the automatic
polling of the Joystick and the Hide button. All these actions and options are
described below.

RESTART DEVICE

The Restart Device button will cause the Joystick to perform a manual ‘unplug’,
this is similar to disconnecting and reconnecting the Joystick from the USB port.
This function is useful whenever you wish to change the Windows Axes States.
In this case, it would be necessary to disconnect and reconnect the Joystick (as
explained in the section “Changing Windows Axes States”), which is effectively
accomplished by clicking on the Restart Device Button. Also, on startup, the Auto
Calibration Routine measures the centre positions of the relevant axes (X, Y,
Rudder, and microstick axes); to manually set the centers of the axes, click on the
Restart button, and hold the axes at their desired positions.

BUTTON & AXIS EMULATION

If the Button & Axis emulation is ON (green background), then the Joystick will
use the last emulation file which was downloaded to the Joystick. The emulation
file is the file that controls the keyboard and mouse emulation, as well as the
various axis parameter changing features. Please refer to the Cougar Owner
Reference Book for further information.

If the Button & Axis emulation is OFF (red background), then the Joystick will
behave like a simple Joystick with buttons activating DirectX buttons in Windows.

DOWNLOAD TO DEVICE

The Download to device button opens the HOTAS Cougar Loader application.
The Loader application is used to download joystick files (Thrustmaster Joystick
files .TMJ). For more information about the structure of an emulation file, please
see the document “HOTAS Cougar Owner Reference Book.” On the next page is
a picture of the HOTAS Cougar Loader application.

There are two buttons and a checkbox on the main HOTAS Cougar Loader
window. The Check button is to check the joystick file for errors. This will not
download the file to the Joystick. The Download button is to check the joystick

THRUSTMASTER®

HOTAS Cougar Reference Book 29

file and then download it to the Joystick if there are no errors. The section in

Figure 14: HOTAS Cougar Loader to download joystick files

‘Currently loaded file properties’ shows you which joystick file is currently loaded
in the Joystick and the date the last download was performed. The checkbox for
‘Turn on emulation mode after downloading’ is used for turning the emulation
mode on after a joystick file has been downloaded to the Joystick. Once a
joystick file has been downloaded, the emulation mode must be turned on for the
Joystick to emulate the keypresses and axis movements stored in the joystick file.
This can also be done by clicking the Button & Axis emulation button in the
HOTAS CCP. See the section ‘Button & Axis emulation’ in the last section.
When checking or downloading the joystick file, the following window will appear.

Figure 15: HOTAS Cougar Compiler to check joystick files

THRUSTMASTER®

30 HOTAS Cougar Reference Book

POLL DEVICE

The checkbox for polling the device is used for the HOTAS CCP to poll the device
for its current status. Polling will check whether the Joystick is connected and
which mode the Joystick is in. The interval time for the polling is set in the edit
box underneath the checkbox.

HIDE / TASKBAR ICON FUNCTIONALITY

The HOTAS CCP can be hidden with only the icon showing in the taskbar. Click
on the ‘Hide’ button to hide the HOTAS CCP. Note that this functionality can only
be used with the polling turned on. To show the HOTAS CCP after the
application has been hidden, click on the taskbar icon with the left button and
choose ‘Open HOTAS Cougar Control Panel…’ from the menu that appears.
The other options available from the menu are to exit the HOTAS CCP and to
open the HOTAS Cougar Loader. You can switch the Joystick to and from
emulation mode by clicking on the taskbar icon with the right button. The colors
of the icon will change according to the following table:

Icon Colour Code Description

Green fighter /
Yellow BG

Emulation mode is ON,
Axis response is in User mode

Red fighter /
Yellow BG

Emulation mode is OFF,
Axis response is in User mode

Green fighter /
Gray BG

Emulation mode is ON,
Axis response is in Windows mode

Red fighter /
Gray BG

Emulation mode is OFF,
Axis response is in Windows mode

Table 2: Taskbar icon descriptions

THRUSTMASTER

HOTAS COUGAR

OWNER’S GUIDE AND
REFERENCE BOOK

THRUSTMASTER®

32 HOTAS Cougar Reference Book

CONTENTS

1. WHAT WE HAVE IN STORE FOR YOU! .. 36
1.1 INTRODUCTION .. 36
1.2 SETTING UP YOUR CONTROLLERS ... 36
1.3 GETTING ACQUAINTED WITH THE REFERENCE BOOK 37

2. UNDERSTANDING THE BASICS .. 39
2.1 UNDERSTANDING THE BASICS OF THRUSTMASTER
PROGRAMMING ... 39

2.1.1 Introduction .. 39
2.1.2 The concept of HOTAS ... 39
2.1.3 So how do we achieve HOTAS for our flight sims and other games? 40
2.1.4 Introducing the joystick file – the basics of programming.. 40
2.1.5 Introducing macros and the macro file – the basics of programming 42
2.1.6 How does the joystick file know which macro file contains its macros? 43
2.1.7 Summarising what we've learnt so far … ... 44
2.1.8 Downloading the joystick file into our controllers ... 45
2.1.9 Structure of joystick and macro files ... 46

3. BUTTON STATEMENTS AND MACROS ... 48
3.1 BUTTON STATEMENTS AND TM KEY SYNTAX .. 48
3.2 THRUSTMASTER KEYBOARD SYNTAX ... 50
3.3 MACROS AND MACRO RULES ... 52
3.4 STATEMENT MODIFIERS ... 54
3.5 SLASH MODIFIERS ... 55

3.5.1 Increasing the number of programmable positions: .. 56
3.5.1.1 /U, /M, /D - Up, Middle, Down ... 57
3.5.1.2 /I, /O - In, Out .. 57

3.5.2 Separating out macros on a button: .. 59
3.5.2.1 /T - Toggle Slash modifier .. 59
3.5.2.2 Resetting the toggle position .. 61
3.5.2.3 Reversing the direction of toggling ... 62
3.5.2.4 /P, /R - Press and Release ... 63

3.5.3 Repeating and non-repeating characters: ... 64
3.5.3.1 Non repeating characters ... 64
3.5.3.2 /A - Auto-Repeat ... 65
3.5.3.3 /H - Hold ... 65

3.5.4 Slash code rules and hierarchy ... 67
3.5.4.1 Slash code rules ... 67
3.5.4.2 Slash code hierarchy .. 67

3.6 DELAY AND REPEAT STATEMENTS .. 68
3.6.1 DLY() statements ... 68
3.6.2 RPT() statements ... 70

THRUSTMASTER®

HOTAS Cougar Reference Book 33

3.7 CHARACTER GROUPING - USING BRACKETS ... 71
3.7.1 () Parentheses .. 72
3.7.2 { } Curly brackets ... 73
3.7.3 < > Angle brackets ... 74

3.8 WORKING WITH AND DEFINING DIRECTX (DIRECT INPUT)
BUTTONS .. 75

3.8.1 USE ALL_DIRECTX_BUTTONS .. 77
3.9 USING KD, KU AND USB CODES .. 79

3.9.1 KD, KU ... 79
3.9.2 USB programming ... 80

4. HAT PROGRAMMING ... 81
4.1 PROGRAMMING THE JOYSTICK HATS .. 81

4.1.1 Programmable positions on a hat.. 81
4.1.2 4-way vs. 8 way hats: USE HatID FORCED_CORNERS 82
4.1.3 Controlling the mouse with a HAT. .. 83
4.1.4 Setting up a HAT as a Point Of View (POV) HAT ... 84
4.1.5 Using a HAT to emulate the keyboard arrow keys .. 85
4.1.6 Using a HAT to emulate the numerical keypad keys .. 85
4.1.7 How the Compiler converts USE HatID AS statements .. 87

5. CONFIGURATION STATEMENTS .. 90
5.1 INTRODUCTION .. 90
5.2 MDEF - MACRO DEFINITION FILE ... 91
5.3 RATE .. 92
5.4 S3_LOCK AND S3_UNLOCK .. 93
5.5 ASSIGNING A DIFFERENT BUTTON FOR /I, /O WITH SHIFTBTN 94
5.6 USE HAT SENSITIVITY - HAT CORNER SENSITIVITY .. 94
5.7 USE T1 SENSITIVITY .. 95
5.8 USE FOXY GRAPHIC AND README ... 96
5.9 NULLCHR - NULL CHARACTER ^ ... 96
5.10 KEYBOARD (AZERTY, QWERTY) ... 98
5.11 USING PROFILES FROM THE COUGAR CONTROL PANEL - USE
PROFILE ... 99

5.11.1 Some more discussion on profiles ... 99
5.12 CONFIGURATION STATEMENTS DESCRIBED ELSEWHERE IN THE
REFERENCE BOOK ... 101

6. AXIS PROGRAMMING .. 102
6.1 BASIC PRINCIPLES .. 102

6.1.1 Understanding the difference between Analogue and Digital 102
6.1.2 The Cougar Axes ... 103

6.2 DIGITAL TYPE STATEMENTS .. 104
6.2.1 Type 1: repeating character generation .. 104

THRUSTMASTER®

34 HOTAS Cougar Reference Book

6.2.1.1 Understanding the - FORCE_MACROS modifier .. 106
6.2.1.2 Important considerations when using FORCE_MACROS 107

6.2.2 Type 2: custom character sequence, fixed regions ... 110
6.2.2.1 Understanding the - FORCE_MACROS modifier .. 111

6.2.3 Type 3: held character generation... 112
6.2.4 Type 4: pulsed character generation ... 113
6.2.5 Type 5: custom character sequence, variable regions .. 114

6.2.5.1 Understanding the - FORCE_MACROS modifier .. 115
6.2.6 Type 6: repeating character generation, variable regions 115

6.2.6.1 Understanding the - FORCE_MACROS modifier .. 116
6.2.7 Axis directions: analogue values and digital statements .. 117

6.2.7.1 Analogue Axes values ... 117
6.2.7.1 Analogue axes values ... 117
6.2.7.2 Type 1 Digital axes statements ... 118
6.2.7.3 Type 2 Digital axes statements ... 118
6.2.7.4 Type 3 Digital axes statements ... 119
6.2.7.5 Type 4 Digital axes statements ... 120
6.2.7.6 Type 5 Digital axes statements ... 120
6.2.7.7 Type 6 Digital axes statements ... 121

6.3 RESPONSE CURVES (CURVE) .. 122
6.4 AXIS TRIMMING (TRIM) .. 125
6.5 DISABLING AXES ... 129

6.5.1 Disabling and Enabling an axis in flight with LOCK, UNLOCK 130
6.6 AXIS MAPPING (SWAP) .. 132
6.7 REVERSING THE DIRECTION OF AN AXIS (REVERSE, FORWARD) ... 133
6.8 THE USE AXES_CONFIG STATEMENT ... 134

7. MOUSE PROGRAMMING ... 136
7.1 UNDERSTANDING THE MOUSE DEVICE AND THE MICROSTICK 136
7.2 USE MTYPE - THE SIMPLEST WAY OF ASSIGNING THE MOUSE TO
THE MICROSTICK .. 137
7.3 USE MICROSTICK AS MOUSE ... 139

7.3.1 Assigning other axes to mouse axes ... 143
7.4 CREATING A CUSTOM MOUSE ON THE MICROSTICK 145
7.5 USE ZERO_MOUSE ... 150
7.6 PROGRAMMING WITH MOUSE BUTTONS .. 151
7.7 DISABLING THE DEFAULT ASSIGNMENT OF THE MOUSE TO THE
MICROSTICK .. 151
7.8 ADVANCED MOUSE MOVEMENT STATEMENTS 152

7.8.1 Defining the screen resolution ... 152
7.8.2 Moving to a specific screen position ... 153
7.8.3 Moving the mouse relative to its current position .. 154
7.8.4 Rotational/Polygon movement .. 156

8. LOGICAL PROGRAMMING .. 160

THRUSTMASTER®

HOTAS Cougar Reference Book 35

8.1 LOGICAL PROGRAMMING - THE BASICS .. 160
8.1.1 Understanding flags .. 160

8.2 DEFINING LOGICAL FLAGS AND THEIR BUTTON STATEMENTS 160
8.3 LOGICAL COMPARATORS .. 162
8.4 THE LOGICAL TOGGLE ... 164
8.5 USING THE LOGICAL DELAY AND PULSE FUNCTIONS 165

8.5.1 The Delay Function ... 165
8.5.2 The Pulse Function ... 166

8.6 LOGICAL PROGRAMMING EXAMPLES .. 167
8.6.1 Toggling a Type 4 statement on and off ... 167
8.6.2 A slow trim function ... 167

9. TROUBLESHOOTING ... 168
9.1 RESETTING THE CONTROLLERS ... 168

9.1.1 In a game: EMPTY_BUFFERS and STICK_OFF .. 168
9.1.2 Within Windows ... 169

10. APPENDICES .. 171
APPENDIX 1. SUMMARY OF THRUSTMASTER STATEMENTS 171

Button statements and statement modifiers .. 171
Slash modifiers and Statement modifiers .. 172
Configuration statements .. 173
Axes programming .. 174
Advanced mouse statements .. 174
Logical statements .. 175
Hardware statements .. 175

APPENDIX 2. THRUSTMASTER DEFAULT KEY SYNTAX 176
APPENDIX 3. USB KEYDOWN AND KEYUP CODES 177
APPENDIX 4. DIFFERENCES BETWEEN ORIGINAL TM FILES AND COUGAR
FILES ... 181

1. Changes in key syntax .. 181
2. Slash modifier changes ... 182
3. Statements no longer supported ... 182
4. File extensions, file names .. 182
5. Default actions ... 183
6. Digital vs. Analogue axes .. 183
7. Type 1 digital statements .. 184
8. Throttle not present ... 184
9. Macros - disallowed characters ... 184
10. RPT ... 184
11. The // comment characters ... 184

THRUSTMASTER®

36 HOTAS Cougar Reference Book

1. What we have in store
 for you!

1.1 INTRODUCTION

Welcome to the next generation of Thrustmaster high-end controllers - the
HOTAS Cougar. Sealed within the hull of this distinctly heavy-metal flight gear
package is the controller itself, plus a CD-ROM containing a whole load of utilities
and goodies, plus this monolithic reference book, and the traditional by now Quick
Install guide.

Among the goodies located on the enclosed CR-ROM, you will find all the
software material necessary to get your HOTAS Cougar up and running
smoothly: the HOTAS Cougar Control Panel (extensively described in the
previous section), as well as the Foxy suite of applications, comprising the main
programming application, Foxy HOTAS Cougar Edition with all of its components
(such as the Composer and Korgy), and its supporting applications, such as Foxy
GUI, the Launcher etc.

I will not broach anything here with respect to the HOTAS Cougar Control Panel
software – for tons of info on this feature, just keep reading!
Foxy and Foxy GUI, however, are not showcased within this reference book. For
all necessary explanations regarding their utilization, please refer to the
respective software’s online help.
Foxy is your key to easily programming each of your joystick’s functionalities,
defining powerful and intricate definition and macro files with unequalled facility.
The Foxy GUI will enable you to precisely assign, with just a few mouse clicks, an
array of key strokes to a single move of your HOTAS Cougar; you are thus able,
with no particular knowledge of the Thrustmaster programming code, to program
keyboard functions to the various (and many!) buttons on the stick.

With this said, pop your favorite CD in your hi-fi system, serve yourself a loooong
drink, and prepare to spend the forthcoming days (and nights) delving into the
promising depths of this reference book!

1.2 SETTING UP YOUR CONTROLLERS

Please refer to the Quick Install provided with the HOTAS Cougar.

THRUSTMASTER®

HOTAS Cougar Reference Book 37

1.3 GETTING ACQUAINTED WITH THE REFERENCE BOOK

Obviously, a cutting-edge controller such as the HOTAS Cougar requires the
extensive help and support components to match its unequalled potential. So,
once you've installed your Cougar and all the software from the CD, and you've
checked in the Cougar Control Panel (CCP), as well as Windows' Control Panel's
Gaming Options applet that everything seems to be working, you're no doubt
wondering where to start with all of this. Hopefully you've installed Foxy as well,
and run it (after having run the CCP first though - this is important), and looked at
it in horror thinking "Ok, so where do I start with all of this?"

So starting with the real basics, and moving on, here's how you can get going
with your Cougar.

Level 1: Basic use

Well you'll be pleased to know that you don't actually need to do anything else, to
start using your Cougar. I recommend first that you move all the axes to the ends
of their travel, and hold them there for a few seconds to allow the auto-calibration
to set itself up correctly. Now you can just exit all the Cougar software if it's
running, go into your game, and use your Cougar. If the game allows you to
assign functions directly to the hats and buttons, then you can program them from
within the game. The game will see the joystick and throttle for what they are and
hopefully assign normal flight functions to them, and may even pick up the extra
axes like the Range and Antenna knobs on the throttle, and assign functions to
them also. And that's it. Just use your Cougar straight away. The Cougar is in
what's called Windows or DirectX mode - which is just some terminology that
means that the buttons and hats aren't programmed and can be assigned their
functions from within the game.

Level 2: Programming the Cougar with pre-supplied files for your games.

The next stage you may want to get into is to set up the Cougar with pre-
programmed functions that we've developed and shipped with the Cougar. We've
developed files for over 30 different games, and they can be used to set up the
Cougar so that you can do a lot more with it than you could do compared to
programming them from within your game. These files are on the CD and can be
downloaded using the Cougar Control Panel. But there's an easier way, or 2
easier ways actually. They involve using Foxy or FoxyGUI.

Foxy: Goto the Editor's Favourites menu, and click on the Game you're
interested in setting up your Cougar for. This will open up two files in Foxy, the left
hand one and main one you see is called the joystick file, and the right hand one,
the macro file. You don't need to do anything else with them at this stage. Now go
to the Download menu, and click the Download menu item. What this will do is to
program your Cougar with the files you just opened. That's it! You're ready to go.
Your Cougar is set up for your flight sim/game. You can also click on the coloured

THRUSTMASTER®

38 HOTAS Cougar Reference Book

Graphical Layout and/or View ReadMe parts of the Apps toolbar (the 2nd one
down) and see what the developer of those files has to say about how to use the
file for your sim, either graphically and/or through the ReadMe text file.

FoxyGUI: Even easier. Just follow the on screen instructions in FoxyGUI. Just as
above, you choose the game you want to play, press the Download button, and
then exit FoxyGUI and go and enjoy your game. Again you can view a graphical
layout and the ReadMe file by pressing those buttons.

Level 3: Learning how to program the Cougar.

There's a plethora of help we've developed to teach you how to program your
Cougar, so here's what's available - just choose the method that best suits you.

1. The next section of the manual, (2.1 - Understanding the basics of

Thrustmaster Programming) as well as Foxy's help file, will introduce the basics
of programming the Cougar, and they're very easy to follow and understand.

2. In Foxy's Wizards menu, try out the Macro wizard followed by the Joystick

wizard. Many people learnt how to program their TM controllers from these 2
very simple wizards alone.

3. Again in the same Wizards menu, there are Tutorial files you can click on,

which open up files in Foxy that explain and teach the basics and onwards.
You can download these files, change them, and see the effect of your
changes - a great way to learn programming.

4. FoxyGUI provides an easy way to program your Cougar as well as explaining

how your programming would look if you'd done it in Foxy. You will eventually
want to migrate to Foxy if you're only using FoxyGUI, because it's more
powerful and quicker to use once you've understood the basics.

5. At any time in Foxy, you can press F1 to get help, or highlight a word in your

joystick file and press F1 to get help directly on that word. The help file is huge,
and is packed with useful information and covers all the detailed explanations
in this manual.

6. Introduce yourself to the Composer and Korgy from Foxy's Insert menu …

you'll rarely need to dive into the manual with those two components of Foxy.

One thing I cannot stress enough. Programming the Cougar is very very easy.
Just put in a little bit of time with the extensive help we've provided, and you'll
reap the rewards in no time at all. And once you're used to the text based
approach to programming, with all of its advantages, you'll never want to go back
to a purely graphical approach so common to simpler controller software.

THRUSTMASTER®

HOTAS Cougar Reference Book 39

2. UNDERSTANDING THE
BASICS

2.1 UNDERSTANDING THE BASICS OF THRUSTMASTER PROGRAMMING

2.1.1 Introduction

When it comes to programmability, Thrustmaster joysticks and throttles have
always set the standards by which other controllers are measured. Unfortunately
they've also had a reputation for being difficult to program, probably arising from
the fact that the software that shipped with previous controllers was DOS based,
and also because people weren't prepared to put in the time doing the homework
to understand these controllers. I can assure you that programming these
controllers is far easier than learning some of today's complex flight sims.

What I'm going to do here is to start from the basics and assume you've had no
experience with Thrustmaster controllers and their programming. It's unfortunate
that we use the term "programming" – a term normally associated with software
development and complex programming languages. What we're really doing with
Thrustmaster programming is just developing files that assign keyboard
characters to the buttons on the joystick and throttle.

2.1.2 The concept of HOTAS

Now in any flight sim, you could fly and control all the weapons, cockpit switches
etc. totally from the keyboard. We could make this a little more realistic if we
added a joystick, and a throttle, and maybe some rudders, collectively called
"controllers." Unfortunately you'd still need to keep looking down to press keys on
your keyboard. But what if we put hats and buttons onto a joystick, which when
pressed, had the same result as you pressing a keyboard key? Then you'd never
have to take your hands off your joystick and throttle, you'd never need to touch
the keyboard, and you'd be able to concentrate on flying, weapons control, etc.
This is the HOTAS concept, a trademark of Thrustmaster, allowing you to
maintain your Hands On Throttle And Stick at all times.

THRUSTMASTER®

40 HOTAS Cougar Reference Book

2.1.3 So how do we achieve HOTAS for our flight sims and other
games?

Quite easily - we program our controllers to mimic the keyboard and the keys
that you press in your flight sim. We do this via two files, the joystick file which
determines which buttons and hats you want to assign keyboard characters to,
and the macro file, which contains "macros", which are quite simply descriptions
as to what the keyboard characters do in your particular flight sim. Let's begin
then by introducing these two files to you.

2.1.4 Introducing the joystick file – the basics of programming

We said earlier that the joystick file is used to
assign keyboard characters to the various buttons
and hats on your controllers. Now, I guess it is a
bit of a misnomer to call it a joystick file. It doesn't
just program the joystick. The joystick file is used
to program all of your controllers - ie. your joystick,
throttle and rudders if you have them.

The buttons and hats on your joystick and throttle
have got special names, to differentiate them for
when we want to program them. Now I'm not
going to scare you straight away with a list of all of them. In fact, you never need
to learn them really because Foxy, with its Composer, will teach you them as you
go along. But I will introduce a few of their names now, as I introduce you to the
basics of programming them. Here goes then!

Let's say that we wanted to program button S2 on the joystick to operate the
autopilot. Now you can see which is button S2 from the diagram above. It's the
top red button on the face of the joystick, just to the left of a large white hat, called
Hat 1. Coming back to button S2 then, we want to program button S2 on the
joystick to operate the autopilot. Let us also say that normally you'd have to press
the "a" key on your keyboard to activate and deactivate the autopilot - that's fairly
common in flight sims.

So what we need to do is to tell the joystick to produce an "a" character every
time button S2 is pressed. Now, in a joystick file, which is just a simple text file,
buttons are identified by the term "BTN" and in this case, we're referring to button
S2. We want BTN S2 to send an "a" character. So here's the statement we need
to type into our joystick file, to program button S2 to generate an "a" character
when it is pressed:

BTN S2 a

THRUSTMASTER®

HOTAS Cougar Reference Book 41

Easy huh! Let's program one of the hats when it is pushed into its up position, to
emulate the function key F1 on your keyboard. It might be that in your flight sim,
this is the "look forward" key. Now all hats are effectively buttons, so just as
before, we can program it with a button (BTN) statement. HAT 1 Up is shortened
to H1U so the statement we're after is:

BTN H1U F1

These statements then are the basics of Thrustmaster programming.

Now in today's modern flight sims, there can be in excess of 100 combinations of
keys that make up your flight controls. Trying to remember what they all do
becomes a bit of a nightmare. Well we could add a Remark (REM) statement
which is a little reminder as to what the button is supposed to do. Like this:

BTN S2 a REM This turns the Autopilot on and off
BTN H1U F1 REM Show the forward view

But there's a better way, using something called macros and the macro file.
Before we move onto these, it's worth noting that REM statements can be placed
anywhere in a file, and that anything after a REM statement on that line is ignored
by the joystick. People often use them at the beginning of their files for titles,
descriptions, general comments etc.

Let's move on then … "To infinity and beyond!" Well … onwards to the macro file
at least!

THRUSTMASTER®

42 HOTAS Cougar Reference Book

2.1.5 Introducing macros and the macro file – the basics of
programming

Before we come onto a macro file, let's define what a macro is. In the previous
section we talked about the joystick file, and we came up with two statements:

BTN S2 a REM This turns the Autopilot on and off
BTN H1U F1 REM Show the forward view

Now, a macro is a word that we make up to make it easier for us to remember
what a keyboard key or group of them actually does in our flight sim. Like this:

Autopilot = a
Forward_view = F1

And now we can change our joystick file statements to:

BTN S2 Autopilot
BTN H1U Forward_view

It may not be obvious as to why this method is better, but believe me, when
you've got a joystick file that contains 100+ statements in it, it makes it very much
easier to go through and understand it this way.

So where do we put these macro statements?

Well they go into their own file, the macro file. So a macro file contains all the
macros that describe what keyboard characters do in your sim, and the joystick
file assigns these macros to the buttons on your joystick and throttle. You will
therefore normally see Thrustmaster files in pairs, the joystick and macro file, for
a particular flight sim or game. This is the reason why in Foxy, the main screen
you use is the Editor, which shows the Joystick file and the Macro file on separate
tabs. So in our example, let's say it's for the flight sim Falcon 4, we could save the
joystick file as Falcon 4.tmj and the macro file as Falcon 4.tmm (tmj = TM
Joystick File, tmm = TM Macrofile.)

THRUSTMASTER®

HOTAS Cougar Reference Book 43

2.1.6 How does the joystick file know which macro file contains its
macros?

Right, well we've covered the basics of producing joystick and macro files, and
hopefully you can see that they're not difficult to understand or produce. Now if
like me you have 30 or so flight sims, then that means you've potentially got 30
joystick and 30 macro files around in Foxy's Files folder.

So as the title to this section asked, "How does the joystick file know which macro
file contains its macros?" Well, at the moment, it doesn't. We need to tell it which
macro file to use. So to complete our basic joystick file, what we need to do now
is to tell the joystick file, which macro file contains the Macro DEFinitions (MDEF)
it is using. After all in one macro file, wheelbrakes may be activated with a "w"
character, and in another it might be the "b" character. We do this with a
statement in the joystick file, which identifies which macro file to use with this
joystick file, like this:

USE MDEF Falcon 4.tmm

So Foxy reads the USE MDEF line in the joystick file when it opens the file, finds
the corresponding macro file, in this example Falcon 4.tmm, and uses the macros
from it for programming the joystick file.

THRUSTMASTER®

44 HOTAS Cougar Reference Book

2.1.7 Summarising what we've learnt so far …

Let's take at look then at how our joystick and macro files are taking shape.

Joystick file
(Falcon 4.tmj)

Macro file
(Falcon 4.tmm)

REM --
REM Falcon 4.tmj
REM Falcon 4 joystick file
REM
REM Rem statements don't do anything.
REM We use them to add comments
REM ---

REM We tell the joystick file which
REM macro file contains its macros

USE MDEF Falcon 4.tmm

REM Now we program some buttons by
REM assigning macros onto them
REM from the macro file

BTN S2 Autopilot
BTN H1U Forward_view

REM --
REM Falcon 4.tmm
REM
REM Falcon 4 macro file
REM --

REM Macros make it much easier for
REM us to remember what actions
REM keyboard keys perform in our REM
flight sim.

REM Macro definitions start here

Autopilot = a
Forward_view = F1

Yes, I know that these macros aren't correct for Falcon 4 - I'm just trying to
illustrate a point here!

THRUSTMASTER®

HOTAS Cougar Reference Book 45

Now then, we have learnt that:

1. Macro files contain macros, which simply describe what a keyboard key does

in your flight sim.
2. Joystick files assign the macros from their associated macro file, onto your

joystick and throttle's hats and buttons, via the BTN statement.
3. The joystick file knows which macro file to get its macros from, via the USE

MDEF statement.
4. REM statements are simply a way of adding comments to files.
5. Joystick and macro files are quite simply text files, with the extensions .tmj

and .tmm respectively, that exist in the same folder on your hard drive. By
default this is Foxy's Files folder.

2.1.8 Downloading the joystick file into our controllers

Great! We've covered the basics of developing files for your controllers. So that
just leaves us with the burning question, "How do we get our files into our
controllers?"

Well the simplest way is to press the "Download" button
on Foxy's toolbar, or you could just press "F12" on your
keyboard. After a very short period of time, the file will
have been transferred, or to use the correct term,
"downloaded" to your controllers. And that's it - you're
ready to go off flying with your buttons now
programmed as laid out in your joystick file. Simple!
Before I leave this here, let me just expand a little as to
what happens when you download a joystick file to your
controllers.

What happens is this: The joystick file is sent to one of the Thrustmaster Cougar
applications, called the Compiler. It has the job of converting the joystick file, in
combination with the macro file, from a text file into a format that the controllers
will understand. This conversion is called "Compiling" and when it is happy that
the compiled file has no errors in it, it downloads the compiled information to the
controllers. It then sends a message back to Foxy to say that all has gone well,
that it has now put the controllers into a state where the buttons will generate the
programmed characters when pressed, and with its job done, it exits and passes
control back to Foxy.

Download
button

THRUSTMASTER®

46 HOTAS Cougar Reference Book

2.1.9 Structure of joystick and macro files

Before we leave this introductory section and proceed further, I'd like to have a
look at some general rules for structuring your joystick and macro files. The
examples below demonstrate this. Do not at this stage worry about
understanding what each line does. All I'd like you to do is just to try and get an
idea as to what goes into a joystick file, and what goes into a macro file, and how
they are laid out. I'll also draw attention to the fact that a joystick file has a section
in it for configuration statements, which we'll discuss later.

Sections Joystick file
(Falcon 4.tmj)

Macro file
(Falcon 4.tmm)

Title

Not compulsory, but

a good idea.

Rem ------------------------------------
Rem Falcon 4.tmj
Rem
Rem Falcon 4 joystick file
Rem
Rem last modified 1st Jan 01
Rem
Rem ------------------------------------

Rem ------------------------------------
Rem Falcon 4.tmm
Rem
Rem Falcon 4 macro file
Rem
Rem last modified 1st Jan 01
Rem
Rem ------------------------------------
Rem
Rem Configuration statements
Rem
Rem don't go into macro files
Rem
Rem So macro definitions start here

Configuration
statements

(only in the
joystick file)

Rem
Rem Configuration statements
Rem

USE MDEF Falcon 4
USE RATE (60)
USE TG1 AS DX1
USE S2 AS DX2

(Continued on following page!)

THRUSTMASTER®

HOTAS Cougar Reference Book 47

Command syntax

Joystick file

Button
assignments,

Axes statements,

Logical

programming.

Macro file

Macro definitions

Rem ------------------------------------
Rem Button assignments
Rem ------------------------------------

BTN H1U View_up
BTN H1D View_Down
BTN H1L View_Left
BTN H1R View_Right

BTN S1 Cycle_MSL_hardpt

BTN S2 Pickle_weapon

BTN S3 /U Cycle_RDRsubmode
 /M Ground_Map_FOV
 /D Cycle_RDRsubmode
BTN S4 /T Padlock_view
 /T 2-D_cockpit

Rem ------------------------------------
Rem Throttle
Rem ------------------------------------

BTN T2 /T Virtual_Cockpit
 /T 2-D_cockpit
BTN T3 Look_Closer
BTN T4 Padlock_Next
BTN T5 Padlock_Prev
BTN T6 Uncage

Rem ------------------------------------
Rem View control
Rem ------------------------------------

View_up = KP8
View_Down = KP2
View_Left = KP4
View_Right = KP6

Rem ------------------------------------
Rem Weapons
Rem ------------------------------------

Cycle_MSL_hardpt = SHF /
Pickle_weapon = SPC

Rem ------------------------------------
Rem Miscellaneous
Rem ------------------------------------

Cycle_RDRsubmode = F8
Ground_Map_FOV = F9
Padlock_view = 4
2-D_cockpit = 2
Virtual_Cockpit = 3
Look_Closer = l

Padlock_Next = KP+
Padlock_Prev = KP-
Uncage = u

That then is a quick introduction to the basics of programming. Now it's time to
look at the statements that make up a joystick file in detail. We'll begin with the
one we introduced initially – the button (BTN) statement, identify what all the
buttons and hats are called, and discuss macros in a little more depth.

THRUSTMASTER®

48 HOTAS Cougar Reference Book

3. Button statements
 and Macros

3.1 BUTTON STATEMENTS AND TM KEY SYNTAX

The HOTAS Cougar consists essentially of several axes, a number of hats,
buttons, trigger etc. Anything that isn't an axis is programmable through a button
statement with the syntax:

Command syntax

BTN Button_name KeySequence and/or macro/s

where:
Button_name identifies the button to be programmed:

The Throttle has: 10 buttons: T1 to T10

The Joystick has: 4 hats : H1 to H4

 4 switches: S1 to S4
 2 stage trigger: TG1, TG2

THRUSTMASTER®

HOTAS Cougar Reference Book 49

Examples:

BTN T3 y Rem "Roger, understood old fruit"
BTN S2 Eject
BTN T4 Chaff Flare Rem Time for bowel movements
BTN S4 h e l l o Rem Notice the spaces – it's not a macro

Each hat has 9 programmable positions:

In general only the 4 main positions are
programmed. For HAT 1 for example these would
be:

BTN H1U Look_up
BTN H1R Look_right
BTN H1D Look_down
BTN H1L Look_left

But the corner positions are also programmable:
e.g. BTN H1UL View_UL

and the middle position:

BTN H1M View_forward

NOTES

1. The BTN statement does not need to be right at the beginning of a line, but

only one BTN statement is allowed per line, and you cannot reference the
button more than once in a file. So if you have:

BTN S2 a b c
BTN S3 d e f

 then these statements are fine, but if you then further in your file have:

BTN S3 g h I

 then the compiler will generate an error informing you that you’ve got a
 duplicate button statement.

2. There must be a single space between BTN and its Button_name, so:

BTNS2

 will generate an error.

THRUSTMASTER®

50 HOTAS Cougar Reference Book

3. You must also have a space after the BTN Button_name, so:

BTN S2a b c

 will generate a compiler error.

4. A character or macro is produced only once with a button statement,

irrespective of whether you hold down the button or not. If you want it to
repeat, then you can consider either using the /A auto-repeat slash modifier,
or the /H hold modifier. This is a different behaviour to the original TM syntax,
and is by design. Slash modifiers are covered later in this reference book.

ADVANCED NOTES

I'm going to digress slightly here and discuss the hat's middle position. I don't
suggest that you try to take this in now, but just be aware of what's to follow just in
case it arises in one of your files one day. The centre of each hat can be
programmed by adding the M to the hat, as in the example above. Note that if
you have a /P, /R (see later notes on slash modifiers) programmed to one of the
hat positions, the /R keys will be generated at the same time as the M keys. So:

 BTN H1U /P 1
 /R 2
 BTN H1M a

will generate, when HAT 1 is pressed up and then released:

“1”, then “a” and “2” at the same time.

If you wanted to ensure that the H1M statement executed after the H1U /R
statement, then you could add a delay (see later notes) on the H1M statement
like this:

 BTN H1M DLY(60) a

3.2 THRUSTMASTER KEYBOARD SYNTAX

Coming back to our statement syntax:

Command syntax

BTN Button_name KeySequence and/or macro/s

Let's take a look at this last part – key sequence.

THRUSTMASTER®

HOTAS Cougar Reference Book 51

If we're going to assign keyboard characters, either in macros or in joystick
statements, you need to understand that there is a Thrustmaster style of
identifying each keyboard character, which we call Thrustmaster Key Syntax. The
basis behind this is that for example, pressing the "5" key on your main keyboard
may be totally different in your simulator to pressing the "5" on your numerical
keypad on the right of your keyboard. So we need to be able to distinguish them,
with a '5' and a 'KP5' in this example. This then is the Thrustmaster Syntax for
keyboard keys:

ESC F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12
` 1 2 3 4 5 6 7 8 9 0 - = BSP
TAB q w e r t y u i o p [] \
CAPS a s d f g h j k l ; ’ ENT
LSHF z x c v b n m , . / RSHF
LCTL LALT SPC RALT RCTL

PRNTSCRN SCRLCK BRK

INS HOME PGUP

NUML KP/ KP* KP-
DEL END PGDN KP7 KP8 KP9

KP+
 KP4 KP5 KP6

 UARROW KP1 KP2 KP3
KPENT

LARROW DARROW RARROW KP0 KP.

The easiest way to ensure that you get these correct is
to use Korgy, the virtual keyboard in Foxy. You can also
display this information from Foxy's Editor from its Help
menu - by selecting the "Keyboard Syntax" menu item.

NOTES

1. The Syntax for chorded keys (where you hold down the Shift, ALT or CTRL

keys) is SHF a, ALT b, CTL c. These are not the same as using LSHF a,
LALT b or LCTL c. For example, LSHF a is equivalent to pressing the left shift
key on your keyboard, then releasing it, and then pressing the "a" key, and
then releasing it. By default the compiler uses the left Shift, ALT, CTRL keys
for chorded keys.

2. Some keys are reserved: () { } < > and need to be programmed with SHF

statements:

THRUSTMASTER®

52 HOTAS Cougar Reference Book

(= SHF 9
) = SHF 0
{ = SHF [
} = SHF]
< = SHF ,
> = SHF .

3. A good habit to get into is to always use SHF, ALT or CTL in conjunction with

other keys, instead of capitalising them:

BTN S1 SHF p
BTN S1 P

Both are correct, and produce a "P" but the former is a better habit to get into.

4. The keyboard layout and syntax is based on a US keyboard. There are

sometimes situations where you may need to produce a keyboard character
that exists only on a different keyboard layout. If this is the case, you can do
this using USB codes directly … this is discussed later in the reference book
and will be likely be used very rarely. But you never know, so it’s there!

5. The syntax has changed from the original TM F22 and is by design. So for

example the AUX suffix on some keys has been removed.

3.3 MACROS AND MACRO RULES

In the Introduction section, we introduced the concept of macros and the macro
file. I gave two examples, which were:

Autopilot = a
Forward_view = F1

Now that we've covered the syntax for all the keys on the keyboard, then you're in
a position to be able to generate a macro file containing macros for your flight sim
or game. Foxy has several useful utilities to help you generate macros that will
ensure that you create macros with the correct syntax, and that follow the rules
below. These are: The Macro Wizard, Speedy and Korgy. See the Foxy
documentation on these for further information. Before I get onto the macro rules
and regulations, let me throw in a quick tip here. It can be very boring and
arduous to sit with your game's keyboard layout card, creating all the macros. If
the game has a help file, see whether you can copy all the keyboard assignments
from that, and then just convert that text into macros that adhere to the rules
below. One final point, I regularly receive files from people who are having
problems successfully downloading files to their controllers, because the
Compiler generates errors that aren't immediately obvious. I have learnt from

THRUSTMASTER®

HOTAS Cougar Reference Book 53

experience that whenever I get sent files, I always run through the macro file first
and look for incorrect syntax, or macros that break the rules below. And I would
say that 90% of compiler errors arise through mistakes in the macro file. Take time
then to create your own macro files, because you know then that they are correct
and once created, you can have the time of your life setting up the joystick file!

Now to the rules and regulations …

1. Macro names cannot contain spaces. Use an underscore _ or - instead. So:

My macro is = b

 is not allowed whereas:

My_macro_is = b
My-macro-is = b are.

2. Make sure that you have a space before and after the "=" sign following
 the macro name. So both of these macro definitions:

 Autopilot= a
 Autopilot =a are incorrect.

3. You cannot use the following characters in macro names:

= < > { } () ^ , spaces

4. Try not to use capitals for macro names. eg. RADAR_RANGE_INCREASE.

Although you can, a file is much easier to read if you don’t. It is also good
syntax to reserve capitals for TM commands (eg. MDEF), or abbreviations
(eg. HUD) only.

5. Macro names are case insensitive. So:

MyMacro = a
mymacro = a are the same.

ADVANCED NOTES

I'll throw this one in here for the real hardcore amongst you!

Macros can be nested, ie. you can use a macro to call another macro. Like this:

Macro_1 = a b c
Macro_2 = Macro_1 d e f

THRUSTMASTER®

54 HOTAS Cougar Reference Book

You can have up to 20 nested macros for one macro, i.e.

Macro-1 = a Macro-2
Macro-2 = b Macro-3
Macro-3 = c Macro-4
... etc...
Macro-20 = d

But not more than 20. And once you get this...

Macro-1 = a Macro-1

The compiler will generate an error stating: "Macro looping too long; two macros
might be calling themselves."

3.4 STATEMENT MODIFIERS

We've looked at some simple statements such as these:

BTN T4 a

which results in a single "a" key being generated when Button T4 on the throttle is
pressed and released. Remember though that there will be situations when you
don't want just a single character produced. On a keyboard, you can press keys
to generate a string of characters, with delays in between each key, you can hold
down a single key, or a group of them, etc. The basis for any successful
programmable controller is that it must be able to emulate what you can do
with a keyboard.

And this is where we introduce Statement Modifiers. We want to be able to go
beyond producing single characters from a button.

Statement modifiers are statements that can be used to change the behaviour of
characters programmed onto a button. They come in 5 flavours:

1. Slash modifiers /U, /M, /D, /I, /O, /P, /R, /T, /A, /H

 BTN S4 /H b Rem Wheelbrakes
 BTN T3 /A c f Rem Chaff and flares

2. Delay and Repeat statements DLY(), RPT()

 BTN T6 1 DLY(60) 1 DLY (60) 2 Rem Request Vector For Recovery TAW
 BTN S2 RPT(6) c Rem 6 chaffs please … like right now would be good!

THRUSTMASTER®

HOTAS Cougar Reference Book 55

3. Character grouping – using brackets (), { }, < >

 BTN T2 (a b c)
 BTN T3 {a b c}
 BTN T4 /P <a b c>
 /R d

4. Working with and defining DirectX (Direct Input) buttons DX

USE TG1 AS DX1
BTN H2U DX1
USE ALL_DIRECTX_BUTTONS

5. Using KeyDown, KeyUp and USB codes KD(), KU(), USB()

BTN H4U KD(a) DLY(60) KU(a)
BTN H4D /P USB (D51) /R USB (U51) Rem 'Down arrow'

We’ll take a look at slash modifiers to begin with …

6. You cannot use reserved TM syntax in your macro names. This includes the

TM syntax for the keyboard keys, and other syntax used in the various TM
statements. So if you have in your joystick file:

BTN S2 HOME

and in your macro file:

HOME = k

then the compiler will generate an error if you try to compile or download that
joystick file, because the word "HOME" is the TM syntax for the keyboard
HOME key.

3.5 SLASH MODIFIERS

There are 10 slash modifiers in total, and they can be grouped together into 3
main groups of slash categories, based on the effect they have on buttons and
their statements:

Increasing the number of programmable positions:

/U, /M, /D using the Throttle's Dogfight switch (T7, T8)
/I, /O using the Joystick's Button S3 switch

THRUSTMASTER®

56 HOTAS Cougar Reference Book

Separating out macros on a button:

/T Toggle
/P, /R Press and Release

Repeating and non-repeating characters:

/A Auto-repeat
/H Hold

Slash code hierarchy and rules:

Finally, you'll need to understand where and where you can't use slash modifiers,
and in what order.

3.5.1 Increasing the number of programmable positions:

The Dogfight switch on the throttle, can be moved into 3 different positions - Up
(/U), Middle (/M), Down (/D). Similarly, button S3 can be pressed in (/I) or be out
(/O), see diagrams below. You can use a combination of these to increase the
number of programmable positions of a button/hat/axis by up to 6 times.

Statement modifiers

/U, /M, /D using the Throttle's Dogfight switch (T7, T8)
/I, /O using the Joystick's Button S3 switch

THRUSTMASTER®

HOTAS Cougar Reference Book 57

3.5.1.1 /U, /M, /D - Up, Middle, Down

You can increase the number of programmable positions on a button , HAT or
digital axis using the position of the Dogfight switch, with the /U, /M and /D slash
modifiers. For example:

BTN H4U /U a
 /M b
 /D c

When Hat 4 is pressed up, it will produce:

• an "a" character if the dogfight switch is in its up (/U) position
• a "b" character if the dogfight switch is in its middle (/M) position
• a "c" character if the dogfight switch is in its down (/D) position

You must place /U, /M, /D statements on separate lines. If they appear on the
same line then a compiler error will be generated. They must also appear in that
order. So:

BTN H4U /D a
 /M b
 /U c

will generate a compiler error.

3.5.1.2 /I, /O - In, Out

You can increase the number of programmable positions on a button , HAT or
digital axis using Button S3, with the /I and /O slash modifiers. For example:

BTN H4D /I 1
 /O 2

When Hat 4 is pressed down, it will produce:

• a "1" character if button S3 is pressed In (/I)
• a "2" character if button S3 isn't pressed (/O = Out)

Combining /U, /M, /D with /I, /O slash modifiers in statements

You can also combine these slash modifiers. For example:

BTN H4R /U /I Engage_my_target
 /O Break_right

THRUSTMASTER®

58 HOTAS Cougar Reference Book

 /M /I Camera_right
 /O Next_waypoint
 /D /I Engine_right
 /O View_right

So now Hat 4 when pressed to the right will perform 6 different functions, depending
on the position of the Dogfight switch (/U, /M, /D) and button S3 (/I, /O).

NOTES

1. The respective /U, /M, /D slash modifiers, if present always precede the /I, /O

modifiers.

2. You cannot use /U, /M, /D slash modifiers on the throttle’s dogfight switch (T7

and T8 buttons), as they’re obviously used to determine these positions.

3. You must place /I, /O statements on separate lines. This is different to the

original TM HOTAS syntax.

4. You must have the /I statements before the /O statements. So:

BTN H4D /I 1
 /O 2

is a valid statement but these two statements:

BTN H4D /O 2
 /I 1
BTN H4D /I 1 /O 2

will both generate compiler errors. This is different to the original TM HOTAS syntax.

5. If you use /I, /O modifiers on S3, any statements on its /O position will usually be

ignored by the Compiler. I say usually because if you use
S3_LOCK statements (see later notes), then you can generate statements on
the /O position of the S3. If you define a different button to use for S3, using the
USE Btn AS SHIFTBTN statement (see later notes) then the same notes apply.

6. If a file has been written for a joystick and a throttle, but only the joystick is

present, then the compiler will use the /M codes on any button/hat position,
and /U, /D statements will be ignored.

THRUSTMASTER®

HOTAS Cougar Reference Book 59

ADVANCED NOTES - HOW STUCK KEYS ARE PREVENTED

Some technical notes for you as to what happens when you change the S3 state
(i.e. going from pressed to not pressed, or vice versa) while a button which is
programmed with both /I and /O statements is being held. If the dogfight switch's
position changes, or the joystick's S3 state changes, this is what the controllers do:

1. Cougar recognises change of state
2. Cougar checks for held buttons
3. Cougar checks held buttons to see if they are programmed differently in

the new state.
4. If so, adds the “release” Macro from the previous state to the output. No

key-presses are performed, but all others are (eg. Mouse statements,
DirectX statements, axis statements)

5. Cougar is in new state.

3.5.2 Separating out macros on a button:

Statement modifiers

/T Toggle between different macros on a button
/P, /R Press and Release actions on a button

3.5.2.1 /T - Toggle Slash modifier

The easiest way to understand what a /T toggle modifier does is just to look at an
example, and see what effect it has:

BTN S2 /T a
 /T b
 /T c

Let us say that button S2 is pressed 3 times. On the first press, an "a" character
is generated. On the next press, a "b" character, and on the final press, a "c"
character. If it is pressed again, then an "a" character is produced, and the cycle
repeats, as the button toggles through its characters/macros.
 There are 16 possible toggles per programmable position, including /U, /M, /D, /I
and /O statements, i.e. you can have:

BTN S2 /U /I 16 toggles can go here
 /O 16 toggles can go here
 /M /I 16 toggles can go here
 /O 16 toggles can go here
 /D /I 16 toggles can go here
 /O 16 toggles can go here

THRUSTMASTER®

60 HOTAS Cougar Reference Book

NOTES

1. Toggle slash codes are not permitted after /P or /R statements. So if you have:

Example 1. BTN TG1 /T /P a
 /R b
 /T c

Example 2. BTN TG1 /P /T a /T b
 /R c

Example 3. BTN TG1 /P a
 /R /T b /T c

2. You cannot use /T statements on T1 if you have a USE T1_SENSITIVITY

statement in your joystick file (see later notes).

3. You cannot use /T statements on a joystick Hat's statements if you have a

USE HatID_SENSITIVITY statement in your joystick file (see later notes).

4. You cannot use /T statements with Digital axes statements (see later notes).

5. You cannot use /T with logical programming statements (see later notes).

6. A single /T modifier in a statement will generate a compiler error. So:

BTN T4 /T a

is not permitted, as there must be more than one /T in a statement.

7. /T statements can appear on the same line or different lines. So:

BTN S2 /T a /T b /T c is permitted

8. You can reset the toggle order with the RESET_TOGGLES statement, and you
can reverse the direction of toggling with the REVERSE_TOGGLES
statement, both of which we're coming onto.

9. You can use other slash modifiers with /T that you couldn't with the original TM

controllers. For example:

BTN S2 /T a /T /H b is permitted.

10. You cannot use toggles on the middle position of a hat. So this will generate a

compiler error:

BTN H1M /T a /T b

Example 1 is permitted, but 2 and 3
will generate compiler errors.

THRUSTMASTER®

HOTAS Cougar Reference Book 61

3.5.2.2 Resetting the toggle position

If you want to reset the toggle index so that you’re back at the beginning of a
toggle statement, you can do so easily with:

Command Syntax

RESET_TOGGLES

So if you have a statement such as:

BTN S2 /I RESET_TOGGLES
 /O /T 1 /T 2 /T 3 /T 4 /T 5 /T 6 /T 7 /T 8 /T 9 /T 0

and you’ve pressed button S2 several times so that you are generating a ‘7’
character for example, then you may want to quickly get back to the beginning of
the series of the toggles. You can do this pressing button S2 with button S3
(which activates the /I statement) held in.
Pressing button S2 whilst S3 is in won’t generate any characters. You’ll need to
press S2 with button S3 not pressed, which would generate a ‘1’ character with
the above statement.

NOTES

1. This statement must appear directly after a /I or /O statement, with the toggles

appearing on the corresponding /I or /O statement. So this would generate a
compiler error:

BTN S4 /U RESET_TOGGLES
 /M /T 1 /T 2 /T 3 /T 4 /T 5 /T 6 /T 7 /T 8 /T 9 /T 0
 /D Some_macro

but this would be fine:

BTN S4 /U Some_macro
 /M /I RESET_TOGGLES
 /O /T 1 /T 2 /T 3 /T 4 /T 5 /T 6 /T 7 /T 8 /T 9 /T 0
 /D Some_macro

2. A RESET_TOGGLES statement cannot have anything else on its statement

line.

THRUSTMASTER®

62 HOTAS Cougar Reference Book

3.5.2.3 Reversing the direction of toggling

If you want to reverse the direction of toggling on button, then you can do this
with:

Command Syntax

 REVERSE_TOGGLES

BTN S2 /I REVERSE_TOGGLES
 /O /T 1 /T 2 /T 3 /T 4 /T 5 /T 6 /T 7 /T 8 /T 9 /T 0

Normally pressing button S2 will toggle between the 1 to 0 characters. If you
press button S2 now with button S3 held in, then you will step through the toggles
in the reverse direction from the toggle position you were in.

NOTES

1. This statement must appear directly after a /I or /O statement, with the toggles

appearing on the corresponding /I or /O statement. So this would generate a
compiler error:

BTN S4 /U REVERSE_TOGGLES
 /M /T 1 /T 2 /T 3 /T 4 /T 5 /T 6 /T 7 /T 8 /T 9 /T 0
 /D Some_macro

but this would be fine:

BTN S4 /U Some_macro
 /M /I /T 1 /T 2 /T 3 /T 4 /T 5 /T 6 /T 7 /T 8 /T 9 /T 0
 /O REVERSE_TOGGLES
 /D Some_macro

2. A REVERSE_TOGGLES statement cannot have anything else on its

statement line. So if we take the above example and change it to:

BTN S4 /U Some_macro
 /M /I /T 1 /T 2 /T 3 /T 4 /T 5 /T 6 /T 7 /T 8 /T 9 /T 0
 /O REVERSE_TOGGLES Macro_here_generates_error
 /D Some_macro

then the macro after the REVERSE_TOGGLES statement will generate a
compiler error.

THRUSTMASTER®

HOTAS Cougar Reference Book 63

3.5.2.4 /P, /R - Press and Release

The /P slash modifier indicates that the specified macro which follows it is to be
generated upon the press of the button or switch. The /R slash modifier indicates
that the specified macro which follows it is to be generated upon the release of
the button or switch.

For example: BTN S2 /P Chaff

 /R Flare

In this example, BTN S2 is using the press and release modifiers. Button S2 will
generate the Chaff macro when pressed, and the Flare macro when released.

NOTES

The /R modifier must be used in conjunction with the /P modifier. If no /P is
present, then using a /R will generate a compiler error, and vice versa.
ADVANCED NOTES

1. If you use these modifiers with a hat position, in conjunction with a statement

for that hat's middle position, then /R macro's characters will be generated at
the same time as the BTN HxM statement's characters. So:

BTN H1U /P 1 /R 2
BTN H1M a

will generate when HAT 1 is pressed up and then released:
"1" and then "a 2" together

2. If you use these modifiers with the hat middle positions BTN HxM then moving

the hat away from the central position will generate the keys associated with
the HxM /R statement at the same time as those associated with H1U. So:

BTN H1U 1
BTN H1M /P a /R b

will generate when HAT 1 is pressed up and then released:
"b 1" at the same time and then "a"

3. There is the potential to produce sticky (continually repeating) keys when using

/P /R statements. For example, consider this:

BTN S4 /P DLY(2000) KD (p)
 /R KU (p)

THRUSTMASTER®

64 HOTAS Cougar Reference Book

Pressing button S4 will first cause a delay of 2 seconds, then emulates the "p"
key on your keyboard being pressed down, and on the release of the button will
act like taking your finger off the "p" key.

But what happens if you take your finger off button S4 before the first delay of 2
seconds is over?
Although the delay continues, and the press of the “p” key will occur after that 2
second delay, the action of the release of the button S4 and thereby the release
of the “p” key will be processed before that press. Unfortunately, the controller
sent a "get your finger off the 'p' key” command before you even sent the
command “put your finger on the ‘p’ key” command, and so the "p" key will
appear to be stuck. There are 2 ways to avoid this. The first is to use and
program your HOTAS Cougar sensibly. If you know that you have to keep your
finger on a button for a certain length of time, then do so! That will always avoid
any sticky key problem. The other way is to enclose the /P statement within < >
brackets:

BTN S4 /P < DLY(2000) KD (p) >
 /R KU (p)

which forces everything within those brackets to be completed before the /R
statement can be conducted, even if you take your finger off the button early.
Note that all macros on all buttons if not currently executing get stalled until
the < > statement is completed. So be careful when using it!

3.5.3 Repeating and non-repeating characters:

Statement modifiers

/A Auto-repeat
/H Hold

3.5.3.1 Non repeating characters

The behaviour of macros and single characters on a button statement has
changed since the original TM syntax. By default, every button and digital
statement, whether there are single characters on it, or macros, do not repeat.
Just a single instance of the character/macro etc. is produced. For those who are
used to the original TM HOTAS, it’s as though there’s an invisible /N slash
modifier in front of every statement if no other is there.

Therefore, a /N modifier is no longer needed - in fact it is ignored by the compiler,
if one is seen in a file. I recommend that you delete them from your files if
present.

THRUSTMASTER®

HOTAS Cougar Reference Book 65

3.5.3.2 /A - Auto-Repeat

This slash modifier results in the exact opposite functionality. It forces the
characters/macros on a button or digital statement to continually generate until
the button is released.

 BTN S2 /A Fire_Missiles

Now, pressing button S2 will force the Fire_Missiles macro to repeat. It's as
though you are rapidly pressing and releasing a key on your keyboard. If other
buttons are then pressed on the controllers, their output will feed into the stream
of characters being generated by this statement. ie. pressing another button does
not stop characters being generated by this statement. Note macros following a
/A modifier can consist of many characters, DLY, RPT etc statements. Also, the
/A modifier replaces the previous TM syntax of placing brackets around a
key/macro to force it to repeat.

3.5.3.3 /H - Hold

 BTN S4 /H b Rem Wheelbrakes

A /H Hold statement can be likened to holding down a key on your keyboard
(although see the Notes section below). For example, many flight sims require
you to hold down the "b" key on your keyboard for controlling your wheelbrakes.
As soon as you release the key, the wheelbrakes come off.

Some more examples:

BTN S4 /H b Rem Wheelbrakes
BTN T6 /H Wheelbrakes
BTN T1 /H ALT F6

It is also possible to use the /H modifier in more complex statements. In this
example below, the statement is equivalent to producing a single "c" character,
followed by a held down "f" character.:

BTN S4 /H c f Rem 1 Chaff, loads of Flares

Whereas:

BTN S4 /H {c f} Rem Chaff and Flares

produces KD(c) KD(f) until the button is released, when it produces KU(c) KU(f).
(See later notes on KD and KU statements.)

THRUSTMASTER®

66 HOTAS Cougar Reference Book

An interesting point to consider here is this statement::

BTN S4 /H {C f}

Now remember that a "C" is actually a "SHF c" and therefore if you're going to be
holding down the LSHF key, then the "f" will actual become an "F". You couldn't
after all produce an "f" character from your keyboard if you were keeping a SHIFT
button held down. Just something to be aware of.

The beauty of being able to use /H with more than one character generated can
be demonstrated with the following statement, which allows you to select a
weapon and then hold the firing of that weapon down:

BTN S4 /H Select_Rockets DLY(600) Fire Rem Select secondary weapons then fire

NOTES

1. Now, there is an important point to understand here. And that is the difference

between a /H modifier, and a /A modifier. Normally when you press a key on
your keyboard, let's say for example the "a" key, then an "a" is produced, then
there's a short delay, and then a series of "a" characters are produced whilst
you keep your finger down on the key. ie.: a some_delay aaaaaaaaaaaaaaaaa
This is the same as using a /H modifier. So:

BTN T3 /H a

will do exactly this. If I want to get rid of that delay in-between the first and
second character, I can achieve this with the /A modifier. So:

BTN T2 /A b produces bbbbbbbbbbbbbbbbbbb with no delay.

2. The Rate at which characters are generated with /A statements is determined

by the USE RATE (time_ms) configuration statement. If such a statement
doesn't exist in a file, the compiler will generate a USE RATE (0) statement
and your default keyboard repeat rate will control this.

3. Note that if the /H slash modifier is followed by multiple macros/characters,

only the last one is held down, while all preceding macros/characters are
produced once. So in this statement:

BTN S2 /H a b c

when S2 is pressed and held, only a single "a" and "b" are generated, before
the "c" is held down.

4. You cannot use /H or /A statements after a /R modifier.

THRUSTMASTER®

HOTAS Cougar Reference Book 67

3.5.4 Slash code rules and hierarchy

When you use slash modifiers (eg, /T, /P, /U), you need to understand that there
are some basic rules as to what order they are allowed in.

3.5.4.1 Slash code rules

1. They must be placed after the button/switch codes (i.e. BTN S2 /H).
2. They must be placed before the 1st macro (i.e. BTN S2 /H SomeMacro)

except /T which can appear within a statement several times.
3. There must be a single space before and after the forward slash codes (see

preceding example).
4. They must appear in a specific order when more than one type is used in a

statement (see "Slash Code Hierarchy" below).
5. The /U /M /D modifiers must be on separate lines to each other.
6. The /I /O modifiers must be on separate lines to each other.

3.5.4.2 Slash code hierarchy

When using multiple slash codes for configuring a button or switch it is important
to use the correct hierarchy. The ordering of slash codes would proceed as
follows:

1. The /U /M /D modifiers if present would precede all other slash codes.
2. The In/Out (/I and /O) would then be next.
3. The Toggle (/T) modifier precedes /P /R modifiers.
4. The Press and Release (/P and /R) modifiers are always after these.
5. The Hold(/H) and Auto-repeat (/A) modifiers are always last.

Let's look at some examples:

BTN S4 /U /I macro6
 /O macro7
 /M /P macro8 /R macro9
 /D /T a
 /T /H b c
 /T /A d DLY(30) e DLY(30) f

BTN S2 /I /T /P macro1 /R macro2

 /T /P macro3 /R macro4
 /O /H macro5

THRUSTMASTER®

68 HOTAS Cougar Reference Book

NOTES

There is no problem leaving a statement blank You don't need to use Null
characters as you had to with the original TM HOTAS. So this statement:

BTN S1 /I Drop_Stores
 /O

will not generate a compiler error - it is fine.

3.6 DELAY AND REPEAT STATEMENTS

Statement modifiers

DLY (Delay)
RPT (Number)

where:

Delay is a time in milliseconds (1 second = 1000 milliseconds) and values from 0
to approximately 82800000 are valid. (For your information, 82800000
milliseconds equates to 23 hours!)

Number is a value who’s maximum changes depending on the length of the
button macro, and can range between 2 and 127.

Let's look at some examples to demonstrate how these statements work.

3.6.1 DLY() statements

 BTN T6 1 DLY(60) 1 DLY (60) 2 Rem Request Vector For Recovery TAW

would result in "1 1 2" being generated, with a 60 millisecond delay between each
character. So why would you want to have delays in between characters? Flight
sims and games are becoming so complex that it is common to see a specific
group of characters required to perform an action. In a flight sim, this is commonly
for communications and often through a menu system. For example in Falcon 4:

 VectorToHomePlate = q DLY(60) q DLY(60) 6

THRUSTMASTER®

HOTAS Cougar Reference Book 69

If we had the macro without the delay statements, like this:

 VectorToHomePlate = q q 6

then there's a very good chance that the sim won't pick up these 3 characters,
because the controller will produce them too quickly, and the sim is busy with its
own calculations and graphics routines. So placing delay statements in between
the characters slows their generation down a little, which is more representative
of how you would do this with fingers on a keyboard, and thus the sim will see the
characters. The situation becomes a little more complex depending on whether a
USE RATE (time) configuration statement is present (see later notes). A USE
RATE (time) statement determines the rate at which continuous keyboard
characters are sent from the controllers.

So:

USE RATE (60)
BTN S1 q q 6

is exactly the same as:

USE RATE (0)
BTN S1 q DLY(60) q DLY(60) 6

Note that the compiler defaults to a USE RATE(0) statement if one isn't present in the file.

When you are using DLY statements, you don't need to keep your finger pressed
on a button for the complete statement to execute. For example:

BTN S2 h DLY (2000) e DLY (2000) l DLY (2000) l DLY (2000) o

results in "hello" being spelt out, with a 2 second pause between each character.
You wouldn't need to keep your finger on button S2 for the whole statement to
execute. An interesting point to note here though is that if you press S2 twice
within 2 seconds, the results will be:

"hheelllloo"

This is a feature of this HOTAS Cougar - it's ability to process statements in
parallel. To prevent this, either be careful how you use the Cougar, or enclose the
statement within < > brackets.

THRUSTMASTER®

70 HOTAS Cougar Reference Book

3.6.2 RPT() statements

BTN S2 RPT(6) c Rem 6 chaffs please … like right now would be good!

Using the RPT command instructs the characters or macros that follow the RPT (nnn)
to repeat a specific number of times, where 'nnn' specifies the number of times the
characters or macros are to be repeated. The item repeated would be the one which
immediately follows the RPT command, (i.e., a repeat count could be applied to any
single character or a group of characters and commands enclosed in parentheses).

So for example in the above statement, pressing button S2 generates 6 "c"
characters at a rate determined by any USE RATE(x) statement in the file.

Some more examples:

BTN S1 RPT(10) a b

would send 10 "a" characters followed by 1 "b" character.

BTN S1 RPT(10) (a b)

would send "a b" ten times in a row.

BTN S1 /A RPT(10) (a DLY(60)) DLY(2000)

would send 10 "a" characters with 60 millisecond delays between each "a"
character, and then there'd be a 2 second delay, and then the whole statement
would repeat.

RPT counts can be 'nested' - for example:

BTN S1 RPT(10) a RPT(10) b

would be a valid statement, and:

BTN S1 RPT(10) (a RPT(10) b)

would be as well.

If you have a macro like this:

Macro1 = a b c

and a statement like this:

BTN S2 RPT (3) Macro1

THRUSTMASTER®

HOTAS Cougar Reference Book 71

then when S2 is pressed you will get:

a a a b c

To avoid this, either enclose the macro or the characters in its definition with
parentheses brackets, i.e.:

BTN S2 RPT (3) (Macro1) or

BTN S2 RPT (3) Macro1 where

Macro1 = (a b c)

3.7 CHARACTER GROUPING - USING BRACKETS

Statement modifiers

 BTN T2 (a b c)
 BTN T3 {a b c}
 BTN T4 /P <a b c>
 /R d

Before we look at these brackets for character grouping, there's a very important
rule when using them. The brackets () { } and < > are reserved TM syntax
statements.
You cannot therefore assign them directly to buttons/macros. Instead you must
use the shifted statements:

(= SHF 9
) = SHF 0
{ = SHF [
} = SHF]
< = SHF ,
> = SHF .

So a macro statement:

Left_ToeBrake = <

will generate a compiler error, and the correct statement is:

Left_ToeBrake = SHF .

THRUSTMASTER®

72 HOTAS Cougar Reference Book

3.7.1 () Parentheses

Parentheses are used in various TM syntax statements, eg. DLY (), RPT (),
USB (), KU (), Digital Type statements etc. to group statements together. We
saw how they were used for example in this complex RPT and DLY statement
from the previous page:

BTN S1 /A RPT(10) (a DLY(60)) DLY(2000)

The important thing to note here is that with the original TM syntax, placing
brackets around a group of characters or macros forced them to repeat. This is
no longer the case with the HOTAS Cougar, as we now have the /A modifier, and
so parentheses are just used to group macros/characters together for statements.
Note that when parentheses are used in TM statements, the compiler interprets
these statements as being the same: DLY (20), DLY(20), DLY (20) etc.

One final point before we leave parentheses. If you want to generate a "(" or ")"
character in your joystick file, then do not use these characters directly, ie.

Macro1 = (
Macro2 =)

The parentheses and other brackets (such as < > { }) are reserved TM
characters as they are used in various statements and affect how such
statements behave.

So if you have:

BTN S1 Macro1

then although it will compile/download fine, it won't generate a "(" character.
Instead you must use the actual key presses you would need to press to
generate these characters. ie.

Macro1 = SHF 9
Macro2 = SHF 0

See the section on Macros and Macro rules. Remember that you can use
Korgy to ensure that you generate the correct TM syntax for the
keys/characters you want to generate.

THRUSTMASTER®

HOTAS Cougar Reference Book 73

3.7.2 { } Curly brackets

The next type of grouping uses "Curly Brackets". This grouping allows a set of
characters to be generated as though they were all being held down at the same time.
Curly bracket groups are treated as a single entity for processing. For example:

BTN S4 {a b c}

is sent as "a" press, "b" press, "c" press, "a" release, "b" release, "c" release, as if
you had pressed and held one key after the other, then released them in the
same order. (Think of what you do when you have to use CTRL ALT DEL)

Also note that a curly bracket group may be used in conjunction with a /H code, in
which case all keys in the group will be held until the button is released. For example:

BTN S4 /H {CTL ALT DEL} is perfectly acceptable (and often desirable!)

ADVANCED NOTES

1. You cannot use DLY statements within curly brackets.

2. The implementation of { } statements on USB devices differs from the

previous gameport TM HOTAS. On the previous TM HOTAS, then characters
within a { } statement were produced in the order in which they appeared. So:

BTN S4 {a b c}

resulted in "a" press, "b" press, "c" press, "a" release, "b" release, "c" release.
On USB though, the order of the characters is actually as per their USB
definitions, and are thus for characters in alphabetical order. So:

 BTN S4 {c b a}

will result in "a" press, "b" press, "c" press, "a" release, "b" release, "c" release.
However, in reality they are all produced at the same time, within the same
frame so the situation is more equivalent to pressing “a” “b” and “c” on a
keyboard at the same time, and releasing them at the same time. If you really
wanted to separate them out so that they occurred in a specific order, then
you’d need to use KD and KU statements, like this:

BTN S4 KD(c) KD(b) KD(a) KU(c) KU(b) KU(a)

THRUSTMASTER®

74 HOTAS Cougar Reference Book

3.7.3 < > Angle brackets

The angle brackets are new syntax for the HOTAS Cougar. Everything within
angle brackets forces the controllers to complete those statements before any
others. For example, consider the following statement:

BTN H1D q DLY(60) q DLY(60) 6 Rem Vector for Homeplate in Falcon 4

It could be disastrous if another button is pressed in the meantime, as it could
change this Falcon 4 communication request into a different request entirely. So
by adding < > to the statement:

BTN H1D <q DLY(60) q DLY(60) 6> Rem Vector for Homeplate

when Hat 1 is pressed down, forces the entire statement to be generated before any
others can be interpreted. This can be very useful when trying to prevent "sticky" keys:

BTN T4 /P < DLY(2000) KD (b) >
 /R KU (b)

Pressing button T4 will always ensure that the /P statement is executed fully, even if
button T4 is released before the execution is completed. So the "KU (b)" character will
only be produced after the "b" key is pressed. If this wasn't the case, then the "KU (b)"
action would be generated as soon as T4 was released, and the "b" key would never
be released, resulting in it appearing as though it was "stuck" pressed down.

NOTES

1. You can’t use < > within { } brackets, so:

BTN S2 { < a b > } will generate a compiler error.

2. You cannot cascade < > brackets, so:

BTN T4 < < a b > > will generate a compiler error.

3. The < > don’t have to enclose the whole statement, so:

BTN S1 a b <c d > e f is fine.

4. If we have a statement like this:

BTN S2 /H <a b c>

then as soon as the “a” and “b” characters have been produced, the statement
effectively becomes a held down “c” character and the forced part of the

THRUSTMASTER®

HOTAS Cougar Reference Book 75

statement is completed. Remember that a /H statement involving several
characters results in the last character being held down.

5. The way that < > statements work is that if any other statement is currently

being executed, then it will continue to be executed. So if you’re holding down
a button elsewhere which has a /H statement on it, then this will continue to
work, whilst you press the button with the < > statement. Any other button
presses result in their statements being added to the buffer memory, to be
executed when the forced < > statement has completed execution. It therefore
follows that one should be careful how you use < > statements, and certainly if
you include long DLY () statements within a < > statement, there exists the
possibility to really stall your controllers. See the troubleshooting section later.

ADVANCED NOTES

We had, as one of the examples earlier:

BTN S4 KD(c) KD(b) KD(a) KU(c) KU(b) KU(a)

This statement puts each KeyDown and KeyUp into 6 separate frames. If there’s
a default RATE statement then a user may want to have the KeyUp statements
occurring at the same time, and not at a speed defined by a RATE statement.
This can be done like this:

BTN S4 KD(c) KD(b) KD(a) KU({c b a})

so now the KeyUp statements are put into 1 frame and therefore occur faster.

3.8 WORKING WITH AND DEFINING DIRECTX (DIRECT INPUT) BUTTONS

If you’ve ever used a simple joystick, with just a trigger on it, then in a flight sim
you’d have found that the trigger would have fired your guns/missiles. It does this,
not because you’ve programmed it to do this, but because Windows told the
game “This joystick has a trigger - you decide what to use it for.” The trigger is
just a button. Such a button is called a DirectX button - a button who’s function is
assigned by the game.

Configuration statement

USE button_identifier or logical_flag AS DXn

Command syntax

BTN button_identifier DXn

THRUSTMASTER®

76 HOTAS Cougar Reference Book

where:

button identifier is H1U, T6, S2 etc.
logical flag is X1 to X32 (discussed later in the reference book)
n is 1 to 28

The HOTAS Cougar consists of 10 analogue axes (with the new rudders), 28
buttons, and a POV HAT (Hat 1). When the Cougar is in Windows mode, the
buttons can be assigned controls within a game or flight-sim. This occurs
because Windows informs the sim what the capabilities of the controllers are - ie.
what axes, buttons, POV, etc are present. When we program a file, we place
configuration statements in the joystick file that allow us to determine what to
report to the sim.

In programmed mode, by default, none of the buttons will be seen by the sim as
DirectX buttons. So we need to inform the sim if we want to assign them. The
most common button assigned as a DirectX button is the Trigger:

USE TG1 AS DX1
We don't need to do anything else - the trigger will be seen by the sim and allocated a
function, usually firing guns and/or missiles. Other statement examples are:

USE H1U AS DX2
USE X4 AS DX3 Rem assigned to a logical flag - see later notes
USE T4 AS DX5

We can also actually program any DXn statement into other button statements,
and do all sorts of clever things:

BTN S2 /H a DLY(2000) DX2

In this example, when I hold down button S2, an "a" character will be produced,
followed by a 2 second delay, and then DX2 will be held down. In this case we're
"almost" defining button S2 as DX2 because we've got no USE statement defining it
elsewhere. I use the term "almost" because this is not the same as having a:

USE S2 AS DX2

statement, which would result in DX2 being generated as soon as S2 is pressed.
In our example DX2 is generated only after "a DLY(2000)" has executed. And
only then will S2 generate DX2.

THRUSTMASTER®

HOTAS Cougar Reference Book 77

3.8.1 USE ALL_DIRECTX_BUTTONS

We've seen how to assign individual buttons as DirectX buttons. This is a good time to
introduce you to the configuration statement, USE ALL_DIRECTX_BUTTONS.

Configuration statement

USE ALL_DIRECTX_BUTTONS

This assigns all buttons as DirectX buttons. Thus a file with this statement in it
would assign all of the non-programmed buttons as DirectX buttons, whilst still
allowing curves to be modified, the mouse to work etc. etc. Note that any Default
Options that you have setup in Foxy will be ignored.

So you could have a very simple file:

Rem Set up all the buttons as DirectX buttons
USE ALL_DIRECTX_BUTTONS
Rem Assign the mouse to the microstick - see later notes in the ref book
USE MTYPE A3
Rem And we'll also assign Hat1 on the joystick as a POV hat
USE HAT1 AS POV

and this would give you on downloading a joystick and throttle that has Hat 1 as a
POV, all buttons as DirectX, and a mouse on the microstick. You could then start
to add button statements and build a file gradually.

NOTES

1. The new syntax replaces the PORT Bx IS statements of the original TM HOTAS.

2. The default DirectX button assignments for the Cougar when in Windows mode are:

DX BTN
ID DX BTN

ID DX BTN
ID DX BTN

ID
1 TG1 8 H2R 15 H4U 22 T4
2 S2 9 H2D 16 H4R 23 T5
3 S3 10 H2L 17 H4D 24 T6
4 S4 11 H3U 18 H4L 25 T7
5 S1 12 H3R 19 T1 26 T8
6 TG2 13 H3D 20 T3 27 T9
7 H2U 14 H3L 21 T2 28 T10

with Hat1 defaulting to a POV (Point Of View) Hat.

THRUSTMASTER®

78 HOTAS Cougar Reference Book

3. If you have a USE ALL_DIRECTX_BUTTONS statement in your joystick file,
and you've programmed one of your controller's buttons, then it won't be setup
as a DirectX button. The way the Compiler converts a
USE ALL_DIRECTX_BUTTONS statement is to assign the default DirectX
buttons as follows:

BTN TG1 /H DX1
BTN S2 /H DX2

etc. Now if in your file it comes across a button statement say for BTN S2, then
it won't set that button up as a DirectX button. This is therefore a great way to
have the majority of your buttons assignable in a game, but also allowing you
to program some of them for your own requirements.

4. If you do use a USE ALL_DIRECTX_BUTTONS statement, and any

combination of USE MTYPE and/or USE HATn AS POV (see later notes), then
these statements must come before any button statements, or the Compiler
will generate an error. Remember that you should always try and structure your
file so that configuration statements appear before any button and axis
statements.

5. The USE MTYPE statement, (which we'll be discussing later in the reference

book), can assign left and right mouse buttons to T1 and T6 on the throttle
depending on what type of MTYPE statement you insert. If you do have a
USE MTYPE statement with a USE ALL_DIRECTX_BUTTONS, then if the
MTYPE statement assigns any buttons as mouse buttons, they will not be
assigned as DirectX buttons.

The MTYPE (A1 to A5) assigns mouse buttons as follows:

A1: T1 = Left mouse button, T6 = Right mouse button
A2: T1 = Right mouse button, T6 = Left mouse button
A3: T1 = Left mouse button
A4: T6 = Left mouse button
A5: Doesn't assign any mouse buttons.

6. If you select a different HAT as a POV control, (we'll be covering this later in

the reference book) for example:

USE HAT3 AS POV

then the compiler will not assign DirectX buttons to its positions.

THRUSTMASTER®

HOTAS Cougar Reference Book 79

ADVANCED NOTES

1. If we take the example we used earlier:

USE TG1 AS DX1

then what the compiler does with this is to translate the statement into:

BTN TG1 /P KD (DX1)
 /R KU (DX1)

Knowing that we can use the KD and KU syntax to separate out the KeyDown
and KeyUp parts of the DirectX button, let's look at a funky example:

BTN TG1 /I /A KD (DX1) DLY(50) KU (DX1) DLY (200)
 /O /H DX1

Now if in your sim the Guns were assigned to DirectX button 1, then with the
above statement, with S3 out, the guns would fire, and with S3 in, the guns would
fire intermittently.

3.9 USING KD, KU AND USB CODES

There are occasions when you want more control over KeyDown and KeyUp
events, or want to be able to send a direct code that defines a special key - say
only available on a non-US keyboard. This can be achieved using the following:

Command syntax

KD(Keyboard character/DX buttons/Mouse buttons)
KU(Keyboard character/DX buttons/Mouse buttons)

USB(Key_eventHID code)

3.9.1 KD, KU

All of these statements are designed to provide programmable control of what
you do when you press a key on your keyboard. And obviously when you press a
key, you press the Key Down (KD) and then take your finger off it and allow the
key to come up (KU). Sometimes you will want to be able to program other
characters to be generated in between these 2 events. And you can do so like
this:

BTN H1U KD(UARROW) DLY(20) KU(UARROW)

THRUSTMASTER®

80 HOTAS Cougar Reference Book

In this example, pressing HAT1 up results in a cursor up arrow key being pressed
for 20 ms, and then released. KD and KU can be used on any key - you just need
to use the correct TM syntax.

It is also possible to combine keys within KD, KU statements.

BTN T4 KD(a b c) DLY(20) KU(a b c)

You can also use KD and KU on DirectX buttons, Mouse buttons and logical flags
(logical flags are covered later in the reference book). For example with the
mouse left button (MOUSE_LB):

BTN T6 KD(MOUSE_LB) DLY(2000) KU (MOUSE_LB)

Pressing button T6 emulates the mouse left button being pressed for 2 seconds
and then released.

3.9.2 USB programming

It is also possible to be able to send the actual USB code to support any syntax
that’s not currently supported in the TM default syntax. This can be useful for non-
US keyboard layouts. USB codes are given in Appendix 3 at the end of this
reference book and each key’s code is suffixed with either a “D” to represent the
KeyDown event, or a “U” to represent the KeyUp event. For example:

BTN T3 /P USB (D51) /R USB (U51) Rem 'Down arrow'
BTN T4 USB (DE1 D04 UE1 U04) Rem ‘Shift a’

The USB codes in these examples are producing keyboard key presses, and
they do so putting them into the memory structure into different frames. If you
want to generate these key presses so that they happen at the same time, then
enclose them as normal within { } brackets. For example:

BTN T4 USB (DE1 D04) DLY (2000) USB ({UE1 U04}) Rem ‘Shift a’

results in the Left Shift and ‘a’ keys being released at the same time. I should
point out though that the difference in timing between frames is very small –
approximately 30 milliseconds, so you’re not likely to see the difference.

THRUSTMASTER®

HOTAS Cougar Reference Book 81

4. HAT Programming

4.1 PROGRAMMING THE JOYSTICK HATS

4.1.1 Programmable positions on a hat

Hats have 9 programmable positions, although
in general, you'll only program the main 4
primary directions. For HAT 1 for example these
would be:

BTN H1U Look_up
BTN H1R Look_right
BTN H1D Look_down
BTN H1L Look_left

But the corner positions are also programmable:

BTN H1UL View_UL
BTN H1UR View_UR
BTN H1DL View_DL
BTN H1DR View_DR

and the middle position:

BTN H1M View_forward

It is important to note that all these programmable positions are separate and that
the corner positions are not by default a product of whatever's programmed on
the positions either side. So if I program the main up, down, left and right
positions to be the keypad 8, 2, 4 and 6, then pushing the hat into the UR position
is not going to result in an 8 and 6 being held down, or a 9 being produced. It
won't do anything. Of course this relies on your ability to move the hat into the
corner position directly.

THRUSTMASTER®

82 HOTAS Cougar Reference Book

4.1.2 4-way vs. 8 way hats: USE HatID FORCED_CORNERS

If I wanted to force the corner positions to generate a combination of the positions
either side of them, then I could use the configuration statement:

Configuration statement

USE HatID FORCED_CORNERS

where: HatID is either HAT1, HAT2, HAT3, HAT4
e.g. USE HAT1 FORCED_CORNERS

(Oh by the way, there is a statement that you can use to make it easier to use
the corner positions more reliably: see USE HatID_SENSITIVITY(nnnn) later in
this reference book)

A HAT can be assigned as one for programming as normal, or as the mouse, the
POV (Point Of View control), the arrow keys, or as the Key Pad numbers. There
are 4 special configuration statements that can be used to set up a hat for
different purposes. And they are:

Configuration statement

USE HatID AS MOUSE (rate) [- optional modifiers]
USE HatID AS POV [- optional modifiers]
USE HatID AS ARROWKEYS [- optional modifiers]
USE HatID AS KEYPAD [- optional modifiers]

where:

HatID is either HAT1, HAT2, HAT3, HAT4, RADIOSWITCH

(The RADIOSWITCH although it doesn’t look like a HAT, actually is, consisting of
buttons T2 (Up), T3 (Down), T5(Left), T4 (Right). It differs slightly from the normal
4 hats in that it effectively has a built in FORCED_CORNERS statement on it.)

Rate is 1 to 127 and applies only to the USE HatID AS MOUSE (rate) statement.

[-optional modifiers] Can be used with these statements to modify the
behaviour of the hat. They consist of:

REVERSE_UD, REVERSE_LR, FORCED_CORNERS, NOHOLD, KP5.

Note that not all of these optional modifiers can be used with all hat statements -
see the relevant sections below, or just use Foxy's Composer.

THRUSTMASTER®

HOTAS Cougar Reference Book 83

4.1.3 Controlling the mouse with a HAT.

Configuration statement

USE HatID AS MOUSE (rate) [- optional modifiers]

Rate: - the speed of the mouse is 1 to 127
Optional modifiers permitted: REVERSE_UD, REVERSE_LR

e.g. USE HAT1 AS MOUSE (2)

Quite simply, this assigns control of the mouse onto HAT 1. The value in
brackets, in this case 2, determines the rate at which the mouse will travel across
the screen – a low value results in a sluggish mouse, and a high value in a fast
one. If the hat is moved into a corner position, then the mouse will move
diagonally.

If we wanted to reverse the Up and Down directions of the mouse we can do this
like this:

USE HAT1 AS MOUSE (2) - REVERSE_UD

and similarly to reverse the Left and Right directions we can do this like this:

USE HAT1 AS MOUSE (2) - REVERSE_LR

You can use the two REVERSE_types together if you want. So:

USE HAT1 AS MOUSE (2) - REVERSE_UD, REVERSE_LR

is a perfectly valid statement.

NOTES

It's also possible to have the mouse controlled from a hat, at the same time as
from the microstick, or anywhere else for that matter. It is also possible to have
the hat control the mouse for a given position of the dogfight switch (/U, /M, /D) on
the throttle, and/or S3 (/I, /O) position. This is covered in more detail in the Mouse
programming section: Understanding the Mouse Device and the Microstick.

THRUSTMASTER®

84 HOTAS Cougar Reference Book

4.1.4 Setting up a HAT as a Point Of View (POV) HAT

Configuration statement

USE HatID AS POV [- optional modifiers]

Optional modifiers permitted: REVERSE_UD, REVERSE_LR

e.g. USE HAT3 AS POV

When you use the controllers in Windows mode, or if you have no HAT 1
statements (BTN H1x) in your joystick file, HAT 1 defaults to operating as a
standard POV HAT. A POV HAT is a special 8-way HAT that in many sims, can
be assigned control by the sim. For example, in Falcon 4, if you don't program
HAT 1, it will behave as a POV HAT for view control. In a similar manner to
previous statements, you can also reverse the directions of the POV in the
up/down and left/right directions with:

USE HAT4 AS POV - REVERSE_UD
USE HAT1 AS POV - REVERSE_LR
USE HAT3 AS POV - REVERSE_UD, REVERSE_LR

You can also program POV positions directly using POVU, POVD etc,
even if you haven't assigned a hat as a POV. You can program any
position that you want (and omit what you don't want). It's like DX buttons
- they're there, but need programming to make them active. So long as
the hardware detects a POV being present on the type of handle you're
using, you can program the POV positions. See the Notes section below.

NOTES

We've seen how easy it is to assign a hat as a POV control. But it's also worth
pointing out that the POV Hat positions can be programmed directly in a file. The
syntax for the positions of the POV Hat are similar to the positions on a normal
Hat. They are:

POVU, POVD, POVL, POVR, POVUL, POVDL, POVUR, POVDR

and you would program with them like this:

BTN T5 POVL
BTN T4 POVR

THRUSTMASTER®

HOTAS Cougar Reference Book 85

4.1.5 Using a HAT to emulate the keyboard arrow keys

Configuration statement

USE HatID AS ARROWKEYS [- optional modifiers]

Optional modifiers permitted: REVERSE_UD, REVERSE_LR, NOHOLD

e.g. USE HAT2 AS ARROWKEYS

It is very common in flight sims to need to be able to program the arrow keys onto
a hat, and that's exactly what this statement does. The arrow keys will be held
down for the duration of the hat press. In a similar manner to previous
statements, you can also reverse the directions of the arrow keys in the up/down
and left/right directions with:

USE HAT3 AS ARROWKEYS - REVERSE_UD
USE HAT4 AS ARROWKEYS - REVERSE_LR
USE HAT1 AS ARROWKEYS - REVERSE_UD, REVERSE_LR

Note that if you move the hat into a corner position, then the hat will generate the
arrow keys either side of that corner position - it has its own built in
FORCED_CORNERS modifier.
If you don't want the arrow keys to be held down, use the NOHOLD modifier with
this statement, like this:

USE HAT3 AS ARROWKEYS - NOHOLD

This will produce single arrow keys when the hat is moved into its different
positions. As with the other optional modifiers, it can be used in conjunction with
them, like this:

USE HAT1 AS ARROWKEYS - REVERSE_UD, REVERSE_LR, NOHOLD

4.1.6 Using a HAT to emulate the numerical keypad keys

Configuration statement

USE HatID AS KEYPAD [- optional modifiers]

Optional modifiers permitted:
 REVERSE_UD, REVERSE_LR, FORCED_CORNERS, NOHOLD, KP5

eg. USE HAT4 AS KEYPAD

THRUSTMASTER®

86 HOTAS Cougar Reference Book

It is also common to want to emulate the numerical keypad with a HAT. With the
above statement then, HAT 4 will generate the numerical keypad numbers, with
the corner positions of the hat (UL UR, DL, DR) generating the "7 9 1 3" keys
respectively.

The problem with the numerical keypad is that it's behaviour varies considerable
between different flight sims and games. Not only that, different sims behave
differently depending on whether the Num LOCK is engaged, or they may force it
to be either on or off. However, in most cases, it usually works if one treats the
numerical keypad as just that - generating numbers.

In a similar manner to previous statements, you can also reverse the directions of
the arrow keys in the up/down and left/right directions with:

USE HAT1 AS KEYPAD - REVERSE_UD
USE HAT2 AS KEYPAD - REVERSE_LR
USE HAT3 AS KEYPAD - REVERSE_UD, REVERSE_LR

We've said that the statement generates the numerical keypad keys. Of course,
there's one key missing, and that's the "5" key (KP5). Some sims assign the KP5
to centre something useful, and you can instruct the compiler to generate a KP5
at the hat's centre position, with the - KP5 syntax as follows:

USE HAT4 AS KEYPAD - KP5

We can also force the corner positions,

USE HAT4 AS KEYPAD - FORCED_CORNERS

which instructs HAT 4 to behave so that if it is pushed into say the UR corner
position, instead of generating a "KP9", to generate instead "KP8" and "KP6"
together, ie. the Up and Right assigned characters.
This may not make much sense when thinking of the hat generating numbers as
such, but are interpreted in some sims and games correctly.

If you don't want the keypad keys to be held down, use the NOHOLD modifier
with this statement, like this:

USE HAT3 AS KEYPAD - NOHOLD

This will produce single keypad keys when the hat is moved into its different
positions.

You can even combine all of these optional modifiers if you so wish:

USE HAT4 AS KEYPAD - REVERSE_UD, REVERSE_LR, FORCED_CORNERS,
NOHOLD, KP5

THRUSTMASTER®

HOTAS Cougar Reference Book 87

4.1.7 How the Compiler converts USE HatID AS statements

This section is for advanced users only, with an unhealthy appetite for detail!

You will need to have read other sections of the reference book to understand
these following advanced notes, but for those who love to get technical, I'm going
to discuss a little how the Compiler actually converts the various USE HATn AS
something_useful statements. We'll start of with the USE HATx AS MOUSE
statement.

USE HAT1 AS MOUSE (2) is converted by the compiler into:

USE HAT1 FORCED_CORNERS
BTN H1U /P MSY(2-) /R MSY(2+)
BTN H1R /P MSX (2+) /R MSX (2-)
BTN H1D /P MSY (2+) /R MSY (2-)
BTN H1L /P MSX (2-) /R MSX (2+)

Similarly the Compiler converts: USE HAT1 AS MOUSE (2) - REVERSE_UD

to: USE HAT1 FORCED_CORNERS

BTN H1U /P MSY(2+) /R MSY(2-)
BTN H1R /P MSX (2+) /R MSX (2-)
BTN H1D /P MSY (2-) /R MSY (2+)
BTN H1L /P MSX (2-) /R MSX (2+)

and finally: USE HAT1 AS MOUSE (2) - REVERSE_UD, REVERSE_LR

to: USE HAT1 FORCED_CORNERS

BTN H1U /P MSY(2+) /R MSY(2-)
BTN H1R /P MSX (2-) /R MSX (2+)
BTN H1D /P MSY (2-) /R MSY (2+)
BTN H1L /P MSX (2+) /R MSX (2-)

Now we'll look at the ARROWKEYS conversion: USE HAT2 AS ARROWKEYS

is converted to:

USE HAT2 FORCED_CORNERS
BTN H2U /H UARROW
BTN H2R /H RARROW
BTN H2D /H DARROW
BTN H2L /H LARROW

THRUSTMASTER®

88 HOTAS Cougar Reference Book

Similarly: USE HAT2 AS ARROWKEYS - REVERSE_UD, NOHOLD

is converted to:

USE HAT2 FORCED_CORNERS
BTN H2U DARROW
BTN H2R RARROW
BTN H2D UARROW
BTN H2L LARROW

Notice how the Up and Down positions are swapped, and that the inclusion of the
NOHOLD modifier removes the /H from the statements.

And finally we'll look at the assignment as a KEYPAD: USE HAT4 AS KEYPAD

is converted to:

BTN H4U /H KP8
BTN H4R /H KP6
BTN H4D /H KP2
BTN H4L /H KP4
BTN H4UR /H KP9
BTN H4DR /H KP3
BTN H4DL /H KP1
BTN H4UL /H KP7

and similarly: USE HAT4 AS KEYPAD - REVERSE_UD, NOHOLD

is converted to:

BTN H4U KP2
BTN H4R KP6
BTN H4D KP8
BTN H4L KP4
BTN H4UR KP3
BTN H4DR KP9
BTN H4DL KP7
BTN H4UL KP1

Notice how the corner positions are swapped as well when we reverse the UD
direction, and that the inclusion of the NOHOLD modifier removes the /H from the
statements.

THRUSTMASTER®

HOTAS Cougar Reference Book 89

The same is true of REVERSE_LR:

USE HAT4 AS KEYPAD - REVERSE_LR

which is converted to:

BTN H4U /H KP8
BTN H4R /H KP4
BTN H4D /H KP2
BTN H4L /H KP6
BTN H4UR /H KP7
BTN H4DR /H KP1
BTN H4DL /H KP3
BTN H4UL /H KP9

Again notice how the corner positions are swapped as well. When we force the
corner positions, with:

USE HAT4 AS KEYPAD - FORCED_CORNERS

the compiler converts the statement to:

USE HAT4 FORCED_CORNERS
BTN H4U /H KP8
BTN H4R /H KP6
BTN H4D /H KP2
BTN H4L /H KP4

Finally:

USE HAT4 AS KEYPAD - KP5

result in the compiler generating an extra:

BTN H4M KP5

statement. Note now that there's no /H slash modifier. The "KP5" is a non
repeating character. That's quite enough of all of that. Let's move on …. if you
haven't already done so!

THRUSTMASTER®

90 HOTAS Cougar Reference Book

5. Configuration statements

5.1 INTRODUCTION

In the beginning of this reference book, we discussed the layout of a joystick file.
Now although statements can appear anywhere in a joystick file, we set out an
area before the main programming statements, for configuration statements.
You've already been introduced to some configuration statements, such as the
USE MDEF configuration statement. It's just that we didn't confuse the issue
earlier on by taking time out to explain what we mean by configuration
statements. So let's do that here, now that you should be a little more comfortable
with programming your controllers.

Configuration statements apply to the whole file - they're not statements
programmed to specific controller positions, although some can be programmed
directly onto button statements. They tell the compiler how to setup the controllers
for your sim. They include statements that tell the compiler which macro file to
use for its macro definitions, what rate you'd like characters generated at, what
axes you may want to disable etc. etc.

Many of the configuration statements are described in detail elsewhere in this
reference book, alongside the areas that they are relevant to. I will therefore
concentrate here on those that haven't been discussed in detail elsewhere.

The syntax has changed though for the HOTAS Cougar when it comes to
configuration statements - so here's the Golden Rule:

All configuration statements begin with either USE or DISABLE

All logical programming configuration statements begin with DEF

This is different to the previous Thrustmaster syntax. Oh - and don't get hung up
at this stage about the term "Logical programming" that has reared its ugly head
in several places. It's mentioned for sake of completeness and it is pertinent to
the areas where I've brought it up, but it's a topic we'll cover right at the end of the
reference book, as it really is for the hardcore programmers amongst you.

THRUSTMASTER®

HOTAS Cougar Reference Book 91

5.2 MDEF - MACRO DEFINITION FILE

Configuration statement

USE MDEF macro_filename

This statement is only needed if a joystick file contains macros (which is to be
encouraged). The macro_filename in such a statement is the name of the macro
file with or without its extension (.tmm).

For example, if I have a joystick file: Janes WW2 Fighters.tmj and its macro file is
Janes WW2 Fighters.tmm, then the MDEF statement would be:

USE MDEF Janes WW2 fighters

It is important that both files are in the same directory, and by default this is
Foxy's Files folder. Although it is possible to design our software so that they don't
need to be, I think it's a practical convention to stick with, as per the original TM
HOTAS.

NOTES

1. Long file names with spaces are allowed for macro file names.

2. It is irrelevant whether you put the extension onto the end of the filename in the

MDEF statement. So both of these are fine:

USE MDEF Janes WW2 fighters
USE MDEF Janes WW2 fighters.tmm

3. Macro filenames, joystick filenames and macro names are not case sensitive

Mig Alley.tmm

is the same macro file as:

mig alley.tmm

4. In the original TM HOTAS, you could actually use multiple MDEF statements,

and hence use macro definitions from different macro files. This is not the case
for the HOTAS Cougar.

THRUSTMASTER®

92 HOTAS Cougar Reference Book

5.3 RATE

Apart from the remaining configuration statements below, the majority of
configuration statements relate to the programming of the axes, and are covered
in that section of this reference book.

Configuration statement

USE RATE (nnnn)

Command syntax

RATE (nnnn)

where nnnn is a time in milliseconds (1000ms = 1 second). Determines the rate at
which characters repeat. If omitted, the compiler will default to a USE RATE (0)
statement resulting in characters being produced at the default keyboard
typematic rate. The larger the rate value, the slower the rate at which characters
are generated. Rate values between 0 and 655350 (just over 10 minutes!) are
permitted.

It is also possible to change the RATE value in real time, by programming it onto
a button:

BTN S4 /I RATE (100)
 /O RATE (0)

or in an axis statement:

ANT 2 5 RATE (0) RATE (30) RATE (60) RATE (90) RATE (120)

(see later notes on programming digital axis statements)

ADVANCED NOTES

The HOTAS Cougar produces characters in groups called frames. Frames are
generated at somewhere around 30ms intervals with a RATE(0) (or without a
RATE) statement. Within a frame, the Cougar can generate 16 characters. If
more characters are produced and that frame consists already of its 16 character
maximum, further characters are shunted to the next frame. The RATE value
effectively determines the time interval between frames.

THRUSTMASTER®

HOTAS Cougar Reference Book 93

5.4 S3_LOCK AND S3_ UNLOCK

Configuration statement

USE S3_LOCK

Command syntax

S3_LOCK
S3_UNLOCK

Normally BTN S3 on the joystick is used so that when it is pressed in, all /I
statements are generated, and when it is released, all /O statements are
generated.

A USE S3_LOCK statement means that if S3 is pressed, then the Cougar will
only use the /I statements. When it is pressed again, it'll shift over to the /O
statements.

If you wanted to be able to toggle between the two states then you could use
something like this:

BTN S2 /T S3_LOCK /T S3_UNLOCK

You don’t need to have a USE S3_LOCK configuration statement present in a file
to use the direct S3_LOCK, S3_UNLOCK statements on a button. So what's the
difference between USE S3_LOCK and just S3_LOCK? USE S3_LOCK applies
to the whole file and is active as soon as the file is downloaded and enabled.
Whereas S3_LOCK on a button statement only applies once that button has
been pressed.

NOTES

1. If you assign a different button/hat as S3 (see the next section) then these

statements will apply to that button, but you use the same syntax.

2. You cannot use hold slash modifier (/H) with S3_LOCK statements. So:

BTN S1 /H S3_LOCK
BTN S4 /H Some_macro S3_LOCK

will both generate compiler errors.

THRUSTMASTER®

94 HOTAS Cougar Reference Book

5.5 ASSIGNING A DIFFERENT BUTTON FOR /I, /O WITH SHIFTBTN

Configuration statement

USE button_identifier AS SHIFTBTN

Command syntax

 SHIFTBTN (button_identifier)

Examples:

USE S4 AS SHIFTBTN
BTN T6 SHIFTBTN (T10)

Determines which button to use instead of the S3 button for selecting /I
statements. If this statement is missing, and it will probably be rarely used, then
button S3 is used for /I, /O statements.

5.6 USE HAT SENSITIVITY - HAT CORNER SENSITIVITY

It can sometimes be very difficult finding the hat corner positions easily. (eg.
H4UL) Remember that the hats are in essence just 4 way switches. Therefore,
because the controllers process everything so quickly, you may often see one of
the macros generated from either side of the corner position first before hitting the
corner position. You can reduce the sensitivity of the hat to help eliminate this
problem with:

Configuration statement

USE HatID_SENSITIVITY (nnnn)

where:

HatID is one of the 4 hats: HAT1, HAT2, HAT3, HAT4
nnnn is a value from 0 (most sensitive) to 1000 (least sensitive). The nnnn is
actually a delay in milliseconds. For example:

USE HAT1_SENSITIVITY (100)

would mean that all statements on HAT1 would only occur after pressing the hat
position for 100ms, giving more time to close the positions either side of a corner
position.

THRUSTMASTER®

HOTAS Cougar Reference Book 95

NOTES

You cannot use /T slash modifiers on any of that Hat's programmable positions if
you have a USE HatID_SENSITIVITY (nnnn) statement setup for that Hat.

So: USE HAT1_SENSITIVITY (60)

BTN H1U /T a /T b /T c would generate a compiler error.

5.7 USE T1 SENSITIVITY

If you find that you’re constantly accidentally pressing the T1 button on the
microstick, then you can make it less sensitive.

Configuration statement

USE T1_SENSITIVITY (nnnn)

where:

nnnn is a value from 0 (most sensitive) to 1000 (least sensitive). The nnnn is
actually a delay in milliseconds, and represents the delay before the T1 button
press is recognised. This feature is implemented for people who find that they’re
accidentally pressing T1 too easily.

Here's an example:

USE T1_SENSITIVITY (1000)

would mean that T1 would only be seen as being pressed after a 1 second delay.

NOTES

You cannot use /T slash modifiers with a BTN T1 statement if you have a
USE T1_SENSITIVITY (nnnn) statement in your file.

THRUSTMASTER®

96 HOTAS Cougar Reference Book

5.8 USE FOXY GRAPHIC AND README

Configuration statement

USE FOXY GRAPHIC imagefile
USE FOXY README textfile

These two configuration statements are ignored by the compiler and are only
used by Foxy for its purposes. When Foxy opens up your files, it scans through
the files, and if it comes across a USE FOXY GRAPHIC imagefile statement, it
will load up the imagefile into the Image Viewer. This is useful when you're
distributing your files, and you have a graphical layout showing what macros are
assigned to what buttons and hats. An example of this statement is:

USE FOXY GRAPHIC Total Air War.bmp

Graphic files permitted are bitmaps (.bmp), jpegs (.jpg) or gifs (.gif).

Similarly, the USE FOXY README configuration statement, instructs Foxy to load up
a text file into the Template Editor, which can be useful to others, or as a reminder to
yourself, describing how you've designed your files, what settings need to be made in
the flight sim for them to work etc. etc. An example of this statement is:

USE FOXY README Total Air War.rtf

Text files permitted are either simple text files, which have the .txt extension, or
Rich Text Files, which have the extension .rtf. Rich text files can have coloured
text, formatting, different fonts etc, and so can be much easier to read.

NOTES

The graphic and text files must be located in the same directory as your joystick
and macro files. By default this is in Foxy's Files folder.

5.9 NULLCHR - NULL CHARACTER

Configuration statement

USE NULLCHR character

A null character is a character in a statement that doesn't generate any output.
The default null character is the ^ caret. So why bother I hear you ask? Well

THRUSTMASTER®

HOTAS Cougar Reference Book 97

some statements require a fixed number or parameters for the statement to be
valid. Some good examples are Digital Type statements which we're going to
come onto in the next section. For example, this statement:

RDDR 3 L ^ R

programs the rudders to generate a held down "L" character when the left rudder
is pushed forward, and a held down "R" character when the right rudder is
pushed forward. When the rudder is at rest and centred, I don't want it to produce
anything, so I've added the default null character, "^" for the centre position. I
couldn't just leave it blank like this:

RDDR 3 L R

because this statement requires 3 characters/macros after the "RDDR 3"
otherwise the compiler would generate an error. So think of null characters then
as place holders where you need to have a character, but you don't want to
produce anything.

Coming back then to this configuration statement, the default null character as
I've said is the caret (^). If you want to use a different character, then you can do
so with statements like these:

USE NULLCHR TAB
USE NULLCHR z

If a caret is used in a game, you can still assign it to the controls indirectly by
entering SHF 6 into the assignment, ie. BTN S1 SHF 6

NOTES

1. With the original TM controllers, you were always advised to never leave a

statement line blank if it was in your joystick file, and to add a null character
there, like this:

BTN S2 /U Fire_Missile
 /M ^
 /D ^

This is not the case with the Cougar. There's no problem with having:

BTN S2 /U Fire_Missile
 /M
 /D

in your joystick file.

THRUSTMASTER®

98 HOTAS Cougar Reference Book

2. The null character actually produces the USB (00) code. This generates

nothing, and so it's also possible if you prefer to set up a macro in your macro
file like this:

Do_Nothing = USB(00)

and then use that in your statements:

RDDR 3 L Do_Nothing R

Of course, it's so much quicker, easier and neater to use the caret ^ and hence
the reason for its existence.

3. You cannot use chorded keys with the USE NULLCHR statement. So these

will generate compiler errors:

USE NULLCHR SHF F1
USE NULLCHR ALT p

5.10 KEYBOARD (AZERTY, QWERTY)

Configuration statement

USE KEYBOARD Keyboard type

Where Keyboard type is either: AZERTY or QWERTY.

If you're using a French AZERTY keyboard, and the game you're programming
your files for remaps keys to match your keyboard layout, so that they're not
performing the functions correctly in your game, then add a USE KEYBOARD
AZERTY statement to your file to see if that fixes it. See the Key Tester section
for more information.

NOTES

Don't bother using a USE KEYBOARD QWERTY statement - the compiler
always defaults to this when compiling files. It's unnecessary to have this in a file.

THRUSTMASTER®

HOTAS Cougar Reference Book 99

5.11 USING PROFILES FROM THE COUGAR CONTROL PANEL - USE PROFILE

Configuration statement

USE PROFILE Profile (Calibration Mode)

where:

Profile: is a profile created by the Cougar Control Panel and saved with the
extension .tmc in the Cougar software's Profiles folder.
Calibration mode: is either AUTO or CUSTOM. Use this to specify whether you
want the Cougar Control Panel to use the profile with autocalibration data or a
custom calibration that you've set up.

Examples:

USE PROFILE Crimson Skies.tmc (AUTO)
USE PROFILE Mechwarrior 4 (CUSTOM)

As we shall soon see with the axis programming, it is possible to change the axes
so that they are swapped around, disabled, have different response curves etc.
etc. This can get quite complicated to set up with various statements. However, if
you've used the Cougar Control Panel to set up profiles, and saved them, then it
can be much easier just to use them. Using a saved profile also has the added
advantage that deadzones can be incorporated into the axes response curves,
which cannot be adjusted programmatically. Furthermore from my experience,
downloads are faster if using a profile compared to using DISABLE or USE
AXES_CONFIG statements (see later notes.)

5.11.1 Some more discussion on profiles

I'm going to spend a little time here discussing tmc files, ie. profiles, and why
they're inherently a very good idea to include in all your joystick files. First off
then, profiles are created using the Cougar Control Panel (CCP). They contain all
the information you can set up in the CCP relating to the axes, such as any axis
mapping, dead zones, curves etc.
Now if you download a file that affects any of this axis data, or use a file that
allows you to say change your joystick curves whilst flying, then when you exit the
sim, all that information stays stored in the controllers. Remember, this is a
driverless system and all information is stored in the controllers. If you then go
and download a different file for a different sim, that doesn't reset this axis
information, then you will inherit the values from the previous sim, because
they're already stored in the Cougar. You have 2 options therefore to get round
this if it's something that causes a problem for you. You can either use a
USE PROFILE statement in each of your joystick files, setting it say to the

THRUSTMASTER®

100 HOTAS Cougar Reference Book

DEFAULT.tmc file (the default profile created by the CCP the first time it is run)
or a profile of your choice for that sim, or in Foxy, you can from the Download
menu, ask the Compiler when it downloads a file to first of all reset the axes by
applying your chosen profile, each time the file is downloaded. I hope that makes
sense.
Finally, because a profile contains calibration data, this is the reason why you
have to inform the compiler whether you want to use the calibration data in the
profile with your sim, or whether you'd like to use the profile with Autocalibration
enabled.

NOTES

1. Foxy and the compiler will initially assume that the profiles are in the Cougar

software's Profiles folder. This is where all profiles created with the Cougar
Control Panel are saved. By default this is: C:\Program Files\Hotas\Profiles. If
when a file is being compiled/downloaded containing a USE PROFILE
statement, then the compiler:

(a) Will look for the profile in its default Profiles directory.
(b) If the profile exists, it will use this one (and not try to look anywhere else).
(c) If the profile does not exist, it will look in the same directory as the
 joystick file, i.e. Foxy's Files folder.
(d) If the profile still does not exist, it will generate an error.

2. Profiles have the file extension tmc. It doesn't matter whether you have that
extension with the USE PROFILE statement. So:

USE PROFILE Crimson Skies.tmc is equivalent to
USE PROFILE Crimson Skies

3. If you're using Foxy to open up a zip of someone else's files, and that zip
contains a profile, then all the files in the zip are extracted to Foxy's Files
folder. You can choose whether you want to move the profile to the Cougar
software's Profiles folder although Foxy won't do this for you - you'll need to
use Explorer. I recommend keeping all profiles in the HOTAS Profiles folder
(usually C:\Program Files\HOTAS\Profiles).

4. A profile contains principally the following information about the Cougar axes:

Mapping data, Axis directions, Centre positions, Calibration data, Dead Zone
information, Curves data, Trim information, Disabled axes data, and the Apply
Axis Disable/Enable View option.

THRUSTMASTER®

HOTAS Cougar Reference Book 101

5.12 CONFIGURATION STATEMENTS DESCRIBED
 ELSEWHERE IN THE REFERENCE BOOK

Some of the configurations statements are beyond the scope of this chapter as
they need explaining in respect to other statements. The following configuration
statements are discussed elsewhere:

Configuration statement Described in
USE Btn AS DXn Section 3.8: Working with and defining DirectX

(Direct Input) buttons
USE ALL_DIRECTX_BUTTONS Section 3.8.1: Assigning all the buttons as

DirectX buttons
USE HAT AS MOUSE, POV,
ARROWKEYS, KEYPAD

Section 4.1: Programming the Joystick HATS

USE CURVE Section 6.3: Response curves and (CURVE)
DISABLE AXIS Section 6.5: Disabling Axes
USE SWAP Section 6.6: Axis Mapping (SWAP)

USE REVERSE Section 6.7: Reversing the direction of an axis
USE AXES_CONFIG Section 6.8: The USE AXES_CONFIG

statement
USE MTYPE Section 7.2: USE MTYPE - the simplest way of

assigning the mouse to the
microstick

USE Axis_Identifier AS Mouse_Axis Section 7.3.1: Assigning other axes to mouse
axes

USE ZERO_MOUSE Section 7.5: Prevents stuck mouse movement
with custom mouse statements
and /I, /O

DISABLE MOUSE Section 7.7: Disabling the default assignment of
the mouse to the microstick

USE SCREEN_RESOLUTION Section 7.8.1: Defining the screen resolution

DEF Xn Section 8.2: Defining logical flags and their
button statements

THRUSTMASTER®

102 HOTAS Cougar Reference Book

6. Axis Programming

6.1 BASIC PRINCIPLES

6.1.1 Understanding the difference between Analogue and Digital

We're now going to take a look at how you can program the various Cougar axes,
both digitally, or modify their analogue behaviour. Before we do this though, let's
explain the difference between an analogue and a digital axis, as many people
find these terms confusing.

Most joysticks on the market these days work in exactly the same way
mechanically. Inside, they contain two potentiometers, or pots as they're referred
to. If you have a radio/Hi-Fi that has a knob on it that you turn to control the volume,
what you're actually turning is a pot that varies its resistance as you turn it.

In a joystick, these pots are connected to the joystick perpendicular to each other,
to measure the left/right motion of the joystick, the x axis, and the
forwards/backwards motion, the y axis. So a joystick has two principal axes along
which it can travel, the x and y axis. The position of the joystick as you move it
can be determined in terms of these 2 axes, ie. how far along the x axis the
joystick has moved, and how far along the y axis. The pots therefore give a range
of values as you move your joystick, and as such, they are termed analogue
devices, as opposed to digital devices, which are either on or off, like the keys on
your keyboard, or buttons on your joystick.

Now, if you're still with me and haven't moved onto the next section, then let's
complicate the issue here a little. In a perfect world, pots would give you very
precise and stable values from them, at all their positions of rotation. But pots can
suffer degradation due to wear and dust. I know I do!. The effect of these is to
sometimes produce a slightly fluctuating value, or worse, the odd "jump" (or
"spike") in value. With the HOTAS Cougar, the signals from the pots aren't fed
directly through to your flight-sim. A digital processor inside the Cougar reads in
the values from a pot, and then filters out erroneous values, to give a more
precise and stable value. So although the pots are analogue, the signals from
them are processed digitally.

We'll soon be looking at what we can do with the axes on the HOTAS Cougar,
and one thing that we can do is to program them digitally. With the above in mind,
it's worth explaining this further, because it's not immediately apparent how we
can program an analogue axis digitally. Let's say for arguments sake, that the
throttle produces analogue values in the range 0 to 100. It is possible to divide the
axis up into say 5 bands, so band 1 is equivalent to readings from 0 to 19, band 2

THRUSTMASTER®

HOTAS Cougar Reference Book 103

is equivalent to readings from 20 to 39 etc. And we can devise a statement that
says "When we're in band 1, produce an 'a' character, in band 2 a 'b' character"
etc. We refer to this as programming an axis with a digital type statement, which I
will explain further in the following sections.

6.1.2 The Cougar Axes

The HOTAS Cougar (Joystick, Throttle, Rudders with toebrakes) has 10 physical
analogue axes. These axes can be treated as:

• purely analogue devices, (assuming that your game and DirectX
supports them) and can therefore assign controls to them

• purely digital devices, so that they can be programmed to generate
keyboard characters only

• or a combination of the above two.

Furthermore, we can affect the analogue axes by:

• removing them completely
• applying different response curves
• applying trim values
• reversing the direction of the axes
• mapping them to other axes, both as a default for the whole file as well

as based on the position of the dogfight and S3 switches

One of the major strengths of the Cougar is just how much can be done with
these axes. However, this can get very complicated, very quickly! So to try and
simplify our understanding of what we can achieve in a Joystick file in terms of
handling and programming these axes, we need to first define the 6 Digital Type
statements. These are used to program the axes digitally to generate keyboard
characters. After that we'll be in a good position to look at what we can do with
the analogue axes as the sim sees them.
Before we go any further, let's define the syntax for these 10 physical axes:

TM Syntax Axis
JOYX Joystick X
JOYY Joystick Y
THR Throttle
RNG Range
ANT Antenna
MIX Microstick X *

MIY Microstick Y
LBRK Left Toe Brake
RBRK Right Toe Brake
RDDR Rudder

* Note: Microstick X, Y are different to Mouse X, Y

THRUSTMASTER®

104 HOTAS Cougar Reference Book

NOTES

1. With the original TM HOTAS an axis was either analogue or digital - ie. it was

seen as a default axis by a game and assigned a function (eg. TQS Throttle =
Thrust in game) or programmed digitally to generate keyboard characters. This is
not the case with the new HOTAS Cougar. By default the axes are seen as
analogue but if you program them digitally, then they will be both analogue and
digital. If a pure digital axis is required the axis in question should be disabled.

2. You do not need to change anything in Control Panel, Gaming Options Applet

if you want to use an axis only digitally. This was the case with the previous TM
controllers, but isn't the case with the new Cougar.

3. With all digital axis statements:

• You can use /U, /M, /D, /I, /O statements
• Any analogue axis modifications (curve, map, reverse) etc do not affect

digital statements. They stay on the physical axis, and linear.

6.2 DIGITAL TYPE STATEMENTS

In this section we're going to look at how to program the axes digitally so that they
produce keyboard characters. Programming any of the axes to produce keyboard
characters is achieved by using one of the 6 available Digital Type Statements.
The easiest way to understand these 6 types is to look at an example of each
type, and see what characters are produced.

Note: Not wanting to complicate things straight away, but just keep in the back of
your mind that it's not just characters that must be used within these Type
statements. Logical flags, mouse statements and axis curve statements for
example can also be used.

6.2.1 Type 1: repeating character generation

A type 1 statement has the following syntax:

Axis
identifier

Digital
Statement

Type

Number of
characters or

macros
(max. 50)

Up
character
or macro

Down
character
or macro

Centre
character
or macro
(optional)

FORCE_
MACROS
(optional)

eg. ANT 1 10 u d c - FORCE_MACROS

or as it would appear in a joystick file:

ANT 1 10 u d c - FORCE_MACROS

THRUSTMASTER®

HOTAS Cougar Reference Book 105

Rotating the ANT knob Clockwise and then Anticlockwise would result in the
following characters being generated:

u u u u u c u u u u u d d d d d c d d d d d

We're not restricted to using single characters in digital statements, so we could
have macros in the macro file defined as:

Chaff_Flare = c DLY(30) f
Getting_desperate = RPT(20) (c f)

and have a Type 1 statement for the RNG knob in the joystick file:

RNG 1 5 Chaff_Flare Getting_desperate

Note that the Number of characters now defines the total number of characters
generated (excluding any centre character) for the full travel of the axis. This is
different to the original TM Type 1 statement, where the Number of characters
defined the number of characters generated from one end of the axis travel to the
centre character, and then from the centre character to the other end of travel.
The reason for the change in syntax is because now we're making the centre
character optional in the statement. For example:

RNG 1 6 u d

produces the following characters on rotating the RNG knob:

u u u u u u d d d d d d

Note that excluding a centre character is different to using a null character
(default is ^) for the centre character. So the statement:

RNG 1 6 u d ^

produces:

u u u dead-zone u u u d d d dead-zone d d d

The Null character "^" results in nothing being produced … a type of dead-zone if
you will. Before we leave this point, the Number of characters must be an even
number if a centre character is provided, otherwise if there's no centre character,
it can be anything. The reason for this I hope should be obvious: if the number of
characters required is 20 and there's a centre character, then you want to be able
to have 10 either side of the centre character.

THRUSTMASTER®

106 HOTAS Cougar Reference Book

6.2.1.1 Understanding the - FORCE_MACROS modifier

This modifier is optional, and can be used only with Type 1, 2, 5 and 6 digital
statements. I'm going to use a Type 1 statement to explain the significance of it,
but the following applies equally to the other type statements it can be used with.

Let's say we have the following:

RNG 1 50 u d

Rotating the RNG knob from one end of its travel to the other, will produce 50 "u"
characters, or 50 d" characters, depending on the direction you move it in. Now if
you move the RNG knob quickly, and test the result in Notepad or Foxy's Key
Tester, you won't see 50 characters produced. You might see 10 to 20 but not 50.
So what's going on? Is this a bug - I mean the Cougar is meant to be able to
process statements very quickly, isn't it? Yes, the Cougar does process
statements very quickly, and in parallel, and that's actually the reason why you're
seeing this effect. What happens when you rotate the RNG knob quickly, isn't that
any of the characters are being missed as such. It's that their key presses and
key releases are being processed in parallel and if up to 16 characters are being
processed, the computer will likely see those as just one character press in one
frame. We can change this behaviour though by forcing the computer to see each
character, like this:

RNG 1 50 (< u >) (< d >)

and that's essentially what the - FORCE_MACROS modifier does. It surrounds
each character/macro in a digital Type statement with (< character/macro >).
Just be careful how you use this modifier though - if you're forcing statements
from one position then other statements elsewhere don't get produced until the
forced statement is processed. Also, make sure that any macros you use in a
digital statement with a - FORCE_MACROS modifier don't have the force
modifiers (the angle < > brackets) in their definition. You cannot cascade force
modifiers and you will do so if you have:

Macro_1 = < a b c>
Macro_2 = d

RNG 1 50 Macro_1 Macro_2 - FORCE_MACROS

as the compiler would convert this to:

RNG 1 50 (< < a b c> >) (< d >)

THRUSTMASTER®

HOTAS Cougar Reference Book 107

NOTES

1. You cannot have: RNG 1 3 a b c d e f

but you can have RNG 1 3 (a b c) (d e f)
or RNG 1 3 ABC_macro DEF_macro

and in your macro file: ABC_macro = a b c

DEF_macro = d e f

2. You can use /U, /M, /D, /I, /O with all digital statements, for example:

RNG /U 1 3 F1 F2
 /M 1 5 (SHF UARROW) (SHF DARROW)
 /D /I 1 6 e t F5
 /O 1 4 [] KP5

3. You can also use /P, /R and /H within your macros or within brackets directly in

your digital type 1, 2, 5 and 6 statements. For example:

RNG 1 3 Macro_1 Macro_2

and in your macro file:

Macro_1 = /P a /R b
Macro_2 = /H d Rem But why you'd want to do this I don't know!

4. You cannot use /T slash modifiers within Type 1 (or any digital axes) statements.

5. A Type 6 statement is a special case of a Type 1 statement. So these statements

produce identical responses from the Antenna knob (u u c u u d d c d d):

ANT 1 4 u d c
ANT 6 5 (0 20 40 60 80 100) u d c

6.2.1.2 Important considerations when using FORCE_MACROS

ADVANCED NOTES

It would seem that it's a good idea to use the FORCE_MACROS all the time from
the above explanation, but this isn't true by any means. The first issue you need
to think about is the effect on not only the response of other programmed hats
and buttons on your controllers, but also the response from the axis you've added
FORCE_MACROS to. Let's look at an example, which also helps me explain
something else.

THRUSTMASTER®

108 HOTAS Cougar Reference Book

Consider this Type 2 Digital Axis statement (yes, I know I haven't covered it - it's
in the next section but this is an easy one to understand.)

ANT 2 26 a b c d e f g h i j k l m n o p q r s t u v w x y z

Now it doesn't take a genius to understand that ignoring the syntax, basically what this
statement does is to program the ANT knob on the throttle to generate the alphabet.

(Apologies if your alphabet is different to mine! And to my American audience, we
pronounce 'z' as 'zed' on this side of the pond, not 'zee' but that's completely
immaterial. I've no idea why I brought that up here. I'm rambling again.)
Now if you add this to your joystick file, and download it, then when you rotate the
ANT knob, the characters in the alphabet are produced, and you can use Foxy's
Key Tester to view them. What you'll notice is that the characters are produced
very quickly indeed. If you then modify the statement by adding the
FORCE_MACROS modifier, like this:

ANT 2 26 a b c d e f g h i j k l m n o p q r s t u v w x y z - FORCE_MACROS

and do the same, you'll notice that the output from the ANT knob is very much
slower - in fact it's at least 4 times slower. This is because for each character, say
the "a" character, the compiler converts it into: < KD(a) KU(a) >. Each of these 4
components goes into their own "frame".

I'd better explain frames before I continue. When the Cougar wants to output
characters or programmed statements, it sends them out every 30ms. If you like this
is the Cougar's frame rate. Each frame can contain several characters - it's not one
character per frame (remember the Cougar processes in parallel, up to 32 macros at
the same time). So in the first example I gave for the ANT and the alphabet, one of
the reasons it generates the alphabet characters so quickly is that it sends several of
the characters in one frame depending on how fast you rotate the ANT knob. You
actually see this in Foxy's Key Tester. Many of the Key Down events go out together,
followed in the next frame by their Key Up events. I'll come back to this…

Anyway, coming back to the FORCE_MACROS modifier then, now the "a"
character gets converted into < KD(a) KU(a) >. These 4 components of the
statement (<, KD(a), KU(a) and >) go into separate frames, and hence the whole
alphabet is going to be generated much slower.

Whilst we're with this ANT statement, I'm going to head off topic for a little bit and
explain another feature of the Cougar - this ability to send multiple characters in
the same frame, and one of the effects of this relating to the order in which
characters are produced. Let's look at the statement again:

ANT 2 26 a b c d e f g h i j k l m n o p q r s t u v w x y z

THRUSTMASTER®

HOTAS Cougar Reference Book 109

You would think that with this statement that rotating the ANT knob one way is
going to produce the alphabet keys alphabetically, and rotating in the opposite
direction, the exact opposite. Well try it out and see what happens when you
rotate the knob quickly. You will see in Foxy's Key Tester that actually some of
the characters appear out of order. This is most noticeable rotating the knob
anticlockwise, and for me this generates:

"x y z u v w p q r s t m n o j k l f g h i a b c d e"

You'll also notice that in the Up/Down/Keycode events window, that the characters are
being produced as a group of Down characters, followed by a group of Up characters,
i.e. Down (z y x) Up (z y x) instead of Down (z) Up (z) Down (y) Up (y) etc. So why are
we seeing this odd order when rotating the ANT knob in this direction? Is this a bug?
Nope, it's not. It's a feature of how USB devices send "keyboard keys." With the older
TM controllers, characters were sent using the PS2 standard which is as individual
key down and key up events. With USB devices, the way it works is like this:
characters aren't sent out as such, rather the operating system scans a keyboard
buffer and notes which keys are pressed and which aren't. So when the Cougar
modifies the buffer to indicate that the z, x and y keys are pressed, the operating
system picks this up in its scan and then outputs the characters in a predefined order,
which for characters is alphabetical order. So in the key test, although you've
instructed the ANT knob to send the characters z, x and y in that order, if the ANT
knob is rotated fast enough so that the Cougar places the z, x and y into the same
frame, then the computer sees these 3 characters as being pressed at the same time
and displays them in their alphabetical order, i.e. x, y and then z.

Of course when we add the FORCE_MACROS modifier, then we always get the
alphabet in the correct order for the rotation direction of the ANT knob, because
each character will never be placed in the same frame as another character being
generated from the ANT knob. But we generate them much slower.

I hope you understood most of that. So think carefully as to when you need to use the
FORCE_MACROS modifier for your flight sim and when you don't. Remember the
golden rule - it's not how it behaves in Windows that matters - you must go and try it out
in your sim and use that as your final testing ground. One final note: If you test out that
statement (without the FORCE_MACROS modifier) then you may notice that some
characters don't get generated when the ANT knob is rotated quickly - indeed you may
get some odd Up characters like SHF and CTL generated. This is something that we
are aware of and doesn't seem to be a bug in the Cougar. We think it relates to the
Microsoft keyboard driver somehow getting overloaded to the point where it reinitialises
itself, resulting in these erroneous Up characters. It's impossible for the Cougar to
generate these erroneous key up characters with that statement.

THRUSTMASTER®

110 HOTAS Cougar Reference Book

6.2.2 Type 2: custom character sequence, fixed regions

A type 2 statement has the following syntax:

Axis
identifier

Digital
Statement

Type

Number of
characters or

macros
(max.50)

Sequence of characters
and/or macros and/or

logical flags

FORCE_
MACROS
(optional)

eg. ANT 2 5 a b c d e - FORCE_MACROS

or as it would appear in a joystick file:

ANT 2 5 a b c d e - FORCE_MACROS

Rotating the ANT knob Clockwise and then Anticlockwise would result in the
following characters being generated:

b c d e d c b a

Just as with the Type 1 statement, notice that each character is only produced
once (but logical flags stay on – see later notes). Again this will also be true if
macros are used instead of single characters. Also, note that with the ANT knob
starting from its fully counterclockwise position, turning it clockwise will generate a
"b" as the first character, and not as you may have thought an "a". This is a
different behaviour compared to a Type 1 statement. It means that if you keep
rotating the ANT knob through its full range of positions several times, you
effectively cycle through the output characters as follows:

b c d e d c b a b c d e d c b a b etc. etc.

so that you're not producing:

a b c d e e d c b a a b c d e e d c b a etc. etc.

Note that unlike the original TM syntax, the Number of characters or macros can
be odd or even. Obviously if you're assigning a statement to something like the
ANT knob you'll probably prefer to use an odd number so that the centre position
corresponds with the centre detent.

THRUSTMASTER®

HOTAS Cougar Reference Book 111

You can also use macros with a type 2 digital statement in a similar manner:

RNG 2 5 Emcon-1 Emcon-2 Emcon-3 Emcon-4 Emcon-5

and in the macro file:

Emcon-1 = e DLY(40) 1
Emcon-2 = e DLY(40) 2
Emcon-3 = e DLY(40) 3
Emcon-4 = e DLY(40) 4
Emcon-5 = e DLY(40) 5

Now I know that we haven't discussed yet what logical flags are, but if you do get
into that side of TM programming, then just be aware that it is also possible to
directly use logical flags in a Type 2 statement, including logical flag toggles:

RNG 2 4 X1 X2* X3* X4

I'll discuss this is more detail in the logical coding section. As well as this, single
characters, macros and logical flags can be mixed in a type 2 statement as follows:

ANT 2 5 a Emcon-2 c ^ X1

6.2.2.1 Understanding the - FORCE_MACROS modifier

See the section 6.2.1.1 for the Type 1 statement for an explanation of this modifier.

NOTES

1. You can use /U, /M, /D, /I, /O slash modifiers with all digital statements.

However, be careful if you mix these modifiers with any assigned in logical
statements (see later notes), as you may get some strange behaviour from
your controllers. For example (this is for advanced users only!):

ANT /U 1 6 a b c
 /M 1 6 d e f
 /D 2 3 (DLY(5000) X1) X2 X3
BTN X1 /U a
 /M b
 /D c

On the /D position, X1 could generate an "a", "b" or "c" depending on whether
the dogfight switch changed position during the 5 second delay.

THRUSTMASTER®

112 HOTAS Cougar Reference Book

2. You cannot use /U, /M, /D, /I, /O within the statement (this applies to all Digital
Type statements). So this would generate a compiler error:

RNG 2 3 a b macro_1

where macro_1 = /I KP1 /O KP2

3. Let's say that you've programmed:

ANT /I 2 3 SM1 SM2 SM3
 /O 2 3 SM4 SM5 SM6

where: SM1 = a

 SM2 = /H b
 SM3 = c
 SM4 = d
 SM5 = /H e
 SM6 = f

Now let's say that you have the S3 switch in the out position, and the antenna knob
in the middle section (generating a held "e"), and now you presses the S3 switch.
This will result in the "e" being broken so that it is no longer held. The "b" will
automatically then be held down, and when S3 is released, the held "e" is remade.

4. You can use /P, /R, /H with Type 1, 2, 5 and 6 statements.

6.2.3 Type 3: held character generation

A type 3 statement has the following syntax:

Axis identifier
Digital

Statement
Type

Left
character

Centre
character

Right
character

Eg. RDDR 3 l c r

or as it would appear in a joystick file:

RDDR 3 l c r

Pushing the left rudder pedal would result in a held down "l" character being
produced, in exactly the same way that held down characters are produced with
the /H modifier.

THRUSTMASTER®

HOTAS Cougar Reference Book 113

NOTES

1. The axis isn't divided up into 3 equal regions but instead more like below,

otherwise the centre region is likely to have too much travel:

Left region Centre
region Right region

/H l c /H r

2. You can use logical flags with a Type 3 statement if you wish.

3. If you don't want to use a centre character, use a null character (^):

RDDR 3 l ^ r

6.2.4 Type 4: pulsed character generation

A type 4 statement has the following syntax:

Axis identifier
Digital

Statement
Type

Pulse rate
(ms)

Left character
or macro

Centre
character or

macro

Right
character or

macro
eg. RNG 4 1000 l c r

or as it would appear in a Joystick file:

RNG 4 1000 l c r

A pulsed character is a character that's produced once every x milliseconds, a bit
like a lighthouse beam or strobe light. Type 4 statements are new to TM
controllers. With the Range statement above, when the Range knob is turned to
the left (or clockwise looking at it face on) then an "l" character is produced every
1000 milliseconds (ie. once every second). Conversely, rotating it in the opposite
direction, a single "c" character is produced at the centre position, and then an "r"
character every second.

NOTES

1. Macros and logical flags can also be used instead of single characters.

2. If you don't want to use a centre character, use a null character: ^

RNG 4 60 l ^ r

3. The Pulse rate is a value in milliseconds between 0 and 82800000 (which is 23 hours!)

THRUSTMASTER®

114 HOTAS Cougar Reference Book

6.2.5 Type 5: custom character sequence, variable regions

A type 5 statement has the following syntax:

Axis
identifier

Digital
Statement

Type

Number of
regions

(max. 50)

Region widths
(as percentages)

Sequence of
characters and/or

macros and/or
logical flags

FORCE_
MACROS
(optional)

eg. THR 5 4 (0 20 45 70 100) a b c d - FORCE_MACROS

or as it would appear in a joystick file:

THR 5 4 (0 20 45 70 100) a b c d - FORCE_MACROS

Type 5 character statements look a little more complex than the others at first, but
in essence they are a special case of a Type 2 statement. Remember that a Type
2 statement has its character sequence distributed evenly across the axis travel.
A type 5 statement divides up the axis into regions or bands, and then assigns its
characters in sequence into those bands.

In the above example, there are 4 bands setup:

• 0 to 20% of axis travel: produces an "a" character
• 21 to 45%: "b" character
• 46% to 70%: "c" character
• 71% to 100%: "d" character

In every other aspect a Type 5 character statement follows the same rules and
restrictions as a Type 2 statement. Now, a digital statement can exist with an
analogue axis. So we could have a default analogue throttle, but using a Type 5
statement, get characters generated at any point in the travel of that axis. So it
would be very easy to introduce reverse thrusters or activate your wheel brakes
during landing at minimum throttle, on the down position of a throttle statement:

THR /U
 /M
 /D 5 1 (0 5) Wheelbrakes

And in the macro file I have:

Wheelbrakes = /P b /R b

So when the dogfight switch is in the down position, and the throttle is in the
minimum position, the Wheelbrakes macro will engage the wheel brakes. Note
how I don't want any digital statements in the dogfight switch's middle (/M) and up
(/U) positions. So the Wheelbrakes macro is only executed when the dogfight
switch is in the down position.

THRUSTMASTER®

HOTAS Cougar Reference Book 115

6.2.5.1 Understanding the - FORCE_MACROS modifier

See the section 6.2.1.1 for the Type 1 statement for an explanation of this
modifier.

NOTES

1. With the original TM HOTAS, you could program the minimum throttle position

with a BTN MT statement, but only when the throttle wasn't analogue. The
BTN MT statement is no longer supported, because of the increased power
you get when programming the throttle digitally as well as being able to use it
as an analogue throttle. If you want to emulate a BTN MT statement, then use
the example given above, i.e: THR 5 1 (0 5) Your_macro_here

2. As with all digital statements, any curves applied to an analogue axis do not

affect the digital statements. They maintain their own linear "curves."

3. You can use /P, /R, /H with Type 1, 2, 5 and 6 statements but put them in the

macro or if you're using them directly in the statement, enclose them with
parentheses. So:

THR 5 1 (0 5) Wheelbrakes

where in your macro file you have the Wheelbrakes macro defined as:

Wheelbrakes = /P b /R b

is fine. And you could also have had:

THR 5 1 (0 5) (/P b /R b) but:

THR 5 1 (0 5) /P b /R b would generate a compiler error.

6.2.6 Type 6: repeating character generation, variable regions

A type 6 statement has the following syntax:

Axis

identifier

Digital
Statement

Type

No. of regions
(max. 50)

Region widths (%)
 Up Down Centre

(optional)

FORCE_
MACROS
(optional)

eg. ANT 6 5 (8 20 40 45 70 80) u d c - FORCE_MACROS

or as it would appear in a joystick file:

ANT 6 5 (8 20 40 45 70 80) u d c - FORCE_MACROS

THRUSTMASTER®

116 HOTAS Cougar Reference Book

A Type 6 digital type statement is essentially the same as a Type 1 digital
statement, just that the characters aren’t banded into equal bands as they would
be with a Type 1 statement. Rather they are placed into bands of your choice.

Unlike Type 1 statements though, if you include a centre character then the
number of regions must be an odd number.

In the above example, there are 5 bands setup:

• 8 to 20% of axis travel
• 21 to 40%
• 41 to 45%
• 46% to 70%
• 71% to 80%

But just as with a Type 1 statement, moving the ANT knob produces:

u u c u u d d c d d

If the statement was:

ANT 6 5 (8 20 40 45 70 80) u d

then you’d produce:

u u u u u d d d d d

6.2.6.1 Understanding the - FORCE_MACROS modifier

See the section 6.2.1.1 for the Type 1 statement for an explanation of this
modifier.

THRUSTMASTER®

HOTAS Cougar Reference Book 117

6.2.7 Axis directions: analogue values and digital statements

6.2.7.1 Analogue Axes values

In this section, I'm going to show what analogue values are produced by the axes
and when, and give examples for each Digital Type statement, to demonstrate
what direction they work in.

6.2.7.1 Analogue axes values

Axis position Analogue value
JOYX - left 0
JOYX - right max
JOYY - back max
JOYY - forward 0
THR - back max
THR - forward 0
RNG - CCW [note 1] max
RNG - CW 0
ANT - CCW [note 1] max
ANT - CW 0
MIX - left [note 2] -
MIX - right -
MIY- down -
MIY - up -
RDDR - left forward 0
RDDR - right forward max
LBRK, RBRK - up max
LBRK, RBRK - pressed 0

NOTES

1. The Range knob is inherently confusing with the direction the digital statements

work in. With the RNG and ANT knobs, the rule is this: You look at the rotary face
on, to determine its counter clockwise (CCW) and clockwise (CW) directions.

2. The Microstick (MIX, MIY) isn't reported to Windows as being present as an

analogue controller. That doesn't mean that it can't be used as an analogue
controller though, as other axes can be mapped onto it.

THRUSTMASTER®

118 HOTAS Cougar Reference Book

6.2.7.2 Type 1 Digital axes statements

JOYX 1 6 r l As Joystick X is moved from Left to Right, we get "r" characters,

and going from Right to Left, we get "l" characters.

JOYY 1 6 f b As Joystick Y is moved from Back to Forwards, we get "f" characters,

and going from Forwards to Back, we get "b" characters.

THR 1 6 f b As the Throttle is moved from Back to Forwards, we get "f"

characters, and going from Forwards to Back, we get "b"
characters.

RNG 1 6 r l As RNG is moved from CCW to CW, we get "r" characters, and

going from CW to CCW, we get "l" characters.

ANT 1 6 r l As ANT is moved from CCW to CW, we get "r" characters, and

going from CW to CCW, we get "l" characters.

MIX 1 6 r l As Microstick X is moved from Left to Right, we get "r" characters,

and going from Right to Left, we get "l" characters.

MIY 1 6 u d As Microstick Y is moved from its Down position Up, we get "u"

characters, and going from Up to Down, we get "d" characters.

RDDR 1 6 l r Left pedal forwards gives "l" characters, left pedal back and right

pedal forwards gives "r" characters.

LBRK 1 6 d u Toe brake pressed Down gives "d" characters, and "u" characters

as it's released. (Same applies for RBRK).

6.2.7.3 Type 2 Digital axes statements

JOYX 2 5 a b c d e As Joystick X is moved from Left to Right, we get "a b c d e"

characters, and going from Right to Left, we get "e d c b a"
characters.

JOYY 2 5 a b c d e As Joystick Y is moved from Back to Forwards, we get "a b c d e"
characters, and going from Forwards to Back, we get "e d c b a"
characters.

THR 2 5 a b c d e As the Throttle is moved from Back to Forwards, we get "a b c d e"

characters, and going from Forwards to Back, we get "e d c b a"
characters.

RNG 2 5 a b c d e As RNG is moved from CCW to CW, we get "a b c d e" characters,

and going from CW to CCW, we get "e d c b a" characters.

THRUSTMASTER®

HOTAS Cougar Reference Book 119

ANT 2 5 a b c d e As ANT is moved from CCW to CW, we get "a b c d e" characters,
and going from CW to CCW, we get "e d c b a" characters.

MIX 2 5 a b c d e As Microstick X is moved from Left to Right, we get "a b c d e"

characters, and going from Right to Left, we get "e d c b a"
characters.

MIY 2 5 1 2 3 4 5 As Microstick Y is moved from its Down position Up, we get "1 2 3 4

5" characters, and going from Up to Down, we get "5 4 3 2 1"
characters

RDDR 2 5 a b c d e With the Left pedal forwards, and then allowing it to go back as

the Right pedal is pushed all the way forwards gives "a b c d e"
characters. Moving the Left pedal forwards as the Right pedal
moves backwards gives "e d c b a" characters.

LBRK 2 5 a b c d e Toe brake pressed Down gives "a b c d e" characters, and "e d c

b a" characters as it's released. (Same applies for RBRK).

6.2.7.4 Type 3 Digital axes statements

JOYX 3 l ̂r When Joystick X is Left, we get a held "l" character, and when

Joystick X is Right, we get a held "r" character.

JOYY 3 b ̂f When Joystick Y is Back, we get a held "b" character, and when

Joystick Y is Forwards, we get a held "f" character.

THR 3 b ̂f When the Throttle is Back, we get a held "b" character, and when

the Throttle is Forwards, we get a held "f" character.

RNG 3 l ̂r When RNG is CW, we get a held "r" character, and when RNG is

CCW, we get a held "l" character.

ANT 3 l ̂r When ANT is CW, we get a held "r" character, and when ANT is

CCW, we get a held "l" character.
MIX 3 l ̂r When Microstick X is Left, we get a held "l" character, and when

Microstick X is Right, we get a held "r" character.

MIY 3 d ̂u When Microstick Y is Down, we get a held "d" character, and when

Microstick Y is Up, we get a held "u" character.

RDDR 3 l ̂r With the Left pedal forwards, we get a held "l" character, and with

the Right pedal forwards, we get a held "r" character.

LBRK 3 u ̂d Toe brake pressed Down gives a held "d" character, and when fully

up, a held "u" character. (Same applies for RBRK).

THRUSTMASTER®

120 HOTAS Cougar Reference Book

6.2.7.5 Type 4 Digital axes statements

JOYX 4 300 l ̂r When Joystick X is Left, we get a pulsed "l" character, and when

Joystick X is Right, we get a pulsed "r" character.

JOYY 4 300 b ̂f When Joystick Y is Back, we get a pulsed "b" character, and when

Joystick Y is Forwards, we get a pulsed "f" character.

THR 4 300 b ̂f When the Throttle is Back, we get a pulsed "b" character, and when

the Throttle is Forwards, we get a pulsed "f" character.

RNG 4 300 l ̂r When RNG is CW, we get a pulsed "r" character, and when RNG is

CCW, we get a pulsed "l" character.

ANT 4 300 l ̂r When ANT is CW, we get a pulsed "r" character, and when ANT is

CCW, we get a pulsed "l" character.

MIX 4 300 l ̂r When Microstick X is Left, we get a pulsed "l" character, and when

Microstick X is Right, we get a pulsed "r" character.

MIY 4 300 d ̂u When Microstick Y is Down, we get a pulsed "d" character, and

when Microstick Y is Up, we get a pulsed "u" character.

RDDR 4 300 l ̂r With the Left pedal forwards, we get a pulsed "l" character, and with

the Right pedal forwards, we get a pulsed "r" character.

LBRK 4 300 u ̂d Toe brake pressed Down gives a pulsed "d" character, and when

fully up, a pulsed "u" character. (Same applies for RBRK).

6.2.7.6 Type 5 Digital axes statements

JOYX 5 5 (0 20 40 60 80 100) a b c d e As Joystick X is moved from Left to Right, we

get "a b c d e" characters, and going from
Right to Left, we get "e d c b a" characters.

JOYY 5 5 (0 20 40 60 80 100) a b c d e As Joystick Y is moved from Back to

Forwards, we get "a b c d e" characters, and
going from Forwards to Back, we get "e d c b
a" characters.

THR 5 5 (0 20 40 60 80 100) a b c d e As the Throttle is moved from Back to

Forwards, we get "a b c d e" characters, and
going from Forwards to Back, we get "e d c b
a" characters.

THRUSTMASTER®

HOTAS Cougar Reference Book 121

RNG 5 5 (0 20 40 60 80 100) a b c d e As RNG is moved from CCW to CW, we get
"a b c d e" characters, and going from CW to
CCW, we get "e d c b a" characters.

ANT 5 5 (0 20 40 60 80 100) a b c d e As ANT is moved from CCW to CW, we get

"a b c d e" characters, and going from CW to
CCW, we get "e d c b a" characters.

MIX 5 5 (0 20 40 60 80 100) a b c d e As Microstick X is moved from Left to Right,

we get "a b c d e" characters, and going from
Right to Left, we get "e d c b a" characters.

MIY 5 5 (0 20 40 60 80 100) 1 2 3 4 5 As Microstick Y is moved from its Down

position Up, we get "1 2 3 4 5" characters,
and going from Up to Down, we get "5 4 3 2
1" characters.

RDDR 5 5 (0 20 40 60 80 100) a b c d e With the Left pedal forwards, and then

allowing it to go back as the Right pedal is
pushed all the way forwards gives "a b c d e"
characters. Moving the Left pedal forwards as
the Right pedal moves backwards gives "e d
c b a" characters.

LBRK 5 5 (0 20 40 60 80 100) a b c d e Toe brake pressed Down gives "a b c d e"

characters, and "e d c b a" characters as it's
released. (Same applies for RBRK).

6.2.7.7 Type 6 Digital axes statements

JOYX 6 5 (0 20 40 60 80 100) r l As Joystick X is moved from Left to Right, we

get "r" characters, and going from Right to Left,
we get "l" characters.

JOYY 6 5 (0 20 40 60 80 100) f b As Joystick Y is moved from Back to Forwards,

we get "f" characters, and going from Forwards
to Back, we get "b" characters.

THR 6 5 (0 20 40 60 80 100) f b As the Throttle is moved from Back to

Forwards, we get "f" characters, and going from
Forwards to Back, we get "b" characters.

RNG 6 5 (0 20 40 60 80 100) r l As RNG is moved from CCW to CW, we get "r"

characters, and going from CW to CCW, we get
"l" characters.

THRUSTMASTER®

122 HOTAS Cougar Reference Book

ANT 6 5 (0 20 40 60 80 100) r l As ANT is moved from CCW to CW, we get "r"
characters, and going from CW to CCW, we get
"l" characters.

MIX 6 5 (0 20 40 60 80 100) r l As Microstick X is moved from Left to Right, we

get "r" characters, and going from Right to Left,
we get "l" characters.

MIY 6 5 (0 20 40 60 80 100) u d As Microstick Y is moved from its Down position

Up, we get "u" characters, and going from Up to
Down, we get "d" characters.

RDDR 6 5 (0 20 40 60 80 100) l r Left pedal forwards gives "l" characters, left

pedal back and right pedal forwards gives "r"
characters.

LBRK 6 5 (0 20 40 60 80 100) d u Toe brake pressed Down gives "d" characters,

and "u" characters as it's released. (Same
applies for RBRK).

That then covers how to program the various axes digitally. What we're going to
move onto now then is to look at the analogue side of the axes, and how we can
affect these through various statements. Probably one of the first things you'd like
to know then is how to change the response curve of an axis, through
programming. Let's take a look ….

6.3 RESPONSE CURVES (CURVE)

All of the 10 axes have by default, linear response curves. That is, if I move the
throttle forwards, the values it sends to the simulator are directly related to how
far forward I've moved it. ie. for every 10% throttle movement, it's output
increases by 10%. It is possible to change the way any of the 10 axes behave, by
changing their respective response curves. The response curves for each axis
are defined by their sensitivity.
There are 2 statements that can be used to define and change the axes response
curves. I'll define these and their terms first, and then explain how to use them:

Configuration statement

USE CURVE (Axis_Identifier, Sensitivity)

Command syntax

THRUSTMASTER®

HOTAS Cougar Reference Book 123

CURVE [Slash modifiers] (Axis_Identifier, Sensitivity)
where:

Axis_Identifier is one of the following:

JOYX, JOYY (together termed JOYSTICK)
THR
RNG, ANT (together termed ROTARIES)
MIX, MIY (together termed MICROSTICK)
LBRK, RBRK (together termed TOEBRAKES)
RDDR

Sensitivity

is a value that varies from –32 to 32 (although values beyond 20 result
in curves you'll never want to use!)
Negative numbers (-10 for example) represent reduced sensitivity –
great for landing, refuelling, formation flying. Zero (0- duh!) effectively
resets the curve to the default linear response (overrides any USE
CURVE statement) and positive numbers (10) give increased sensitivity,
great for dogfighting in WW2 aircraft for example.

Slash modifiers (optional)

 /U, /M, /D (Dogfight switch) and /I, /O (Button S3) are permitted

Confused? So am I! So, let's look at some examples, and state what the
differences are between the USE CURVE and CURVE statements are.
USE CURVE is a configuration statement – (all USE statements are). That
means, it sits on its own line near the top of a joystick file, and can't be
programmed onto a controller position. It is used to define default axes
response curves. Normally each axis is linear, so setting the Joystick X axis
response curve like this:

USE CURVE (JOYX, 0)

would be pretty pointless, as the compiler will do this anyway, assuming that you
want linear response curves on the joystick X axis. However if we had the
following in the joystick file:

USE CURVE (JOYSTICK, 2)

then this would result in both the joystick X and Y curves being modified to be more
responsive. Note how I've used the term "JOYSTICK" to define both the JOYX and
JOYY axes, so the compiler will actually send both of the following to the controllers:

USE CURVE (JOYX, 2)

THRUSTMASTER®

124 HOTAS Cougar Reference Book

USE CURVE (JOYY, 2)
So, the USE CURVE statement can be used to modify default axes response curves.
The CURVE statement follows the same syntax, but as it isn't a configuration
statement, it can be used in button statements, digital axes statements, or as its
own special statement, see the examples below. Let's say that we wanted to
adjust the sensitivity of the Joystick Y axis based on the position of the Dogfight
switch. We can do so with this CURVE statement:

CURVE /U (JOYY, 2) Rem More responsive for dogfighting
 /M (JOYY, 0) Rem Normal
 /D (JOYY, -2) Rem Less responsive for landing

Similarly, with the microstick:

CURVE /I (MICROSTICK, 2) Rem More responsive
 /O (MICROSTICK, 0) Rem Normal

And you can mix them:

CURVE /U /I (MICROSTICK, 2) (THR, 2)
 /O (MICROSTICK, 0)
 /M /I (RDDR, -2)
 /O (RDDR, 0) (TOEBRAKES, 2)
 /D (JOYY, -2)

The CURVE statement can also be used directly on a programmable position:

BTN T7 /P CURVE(JOYX, 3) Rem Responsive
 /R CURVE(JOYX, 0) Rem Normal

The CURVE statement can also be used within Digital Axis statements, so if I
wanted to I could change the responsiveness of the joystick depending on the
position of the throttle. For example:

THR 2 5 CURVE(JOYX, -3) CURVE (JOYX, -1) CURVE (JOYX, 0)
CURVE (JOYX, 2) CURVE (JOYX, 5)

at low throttle values, the joystick X axis is less responsive than normal, but
becomes increasingly more responsive with increased throttle. As a quick aside
here, this is actually a lovely example of how the throttle can still behave as an
analogue throttle, whilst being programmed digitally. Well I think it's lovely anyway.

NOTES

1. If an axis is mapped to another axis (see later notes) then its response curve

goes with it.

THRUSTMASTER®

HOTAS Cougar Reference Book 125

2. You cannot setup deadzones with a curve statement - you need to use the
Cougar Control Panel for this. If you need these deadzones to be specific to a
particular sim, then use the CCP to save these deadzones in a profile and use
the USE PROFILE statement in your joystick file. See point 5.

3. You cannot have more than one CURVE statement in a joystick file. So the

second CURVE statement here would give a compiler error.

CURVE /I (MICROSTICK, 2) Rem More responsive
 /O (MICROSTICK, 0) Rem Normal

CURVE /I (ROTARIES, 2) Rem More responsive

 /O (ROTARIES, 0) Rem Normal

Not to be confused with using CURVE programmed onto axes, buttons, which
you are allowed to use more than once.

4. If you're not programming a CURVE statement onto a button or axis, then you

cannot use CURVE on its own without slash modifiers. Instead use a
configuration statement. So:

CURVE (JOYSTICK, 10) will generate an error, whereas:

USE CURVE (JOYSTICK, 10) is fine.

5. You can also use a saved profile - see the USE PROFILE statement discussed
earlier if you want to apply multiple curves to axes for the whole file. This has
the advantage of being able to incorporate deadzones.

6.4 AXIS TRIMMING (TRIM)

Trimming an axis is a means of being able to take your hands off your controllers,
and yet the sim sees them as though you're holding them in one position. Let me
explain further. Let's say you're cruising along at 15,000ft and for some reason
your plane wants to climb when the joystick is centred, so you have to correct this
by constantly having to push the joystick forwards. In this example, the TRIM
function can be used to allow you to leave the joystick centred, but seen by the
sim as though you're pushing the joystick forwards. This isn't limited to the
joystick – it applies to all 10 analogue axes.

Command syntax

TRIM (Axis_Identifier, Trim_amount)
and:

HOLDTRIM (Axis_Identifier)

THRUSTMASTER®

126 HOTAS Cougar Reference Book

where:

Axis_Identifier is one of the following:

JOYX, JOYY (together termed JOYSTICK)
THR
RNG, ANT (together termed ROTARIES)
MIX, MIY (together termed MICROSTICK)
LBRK, RBRK (together termed TOEBRAKES)
RDDR

Trim_Amount

 is a value that varies from -128 to 127 or TO_CURRENT.

A zero value will reset the axis curve so that there's no trim applied.
A positive value increases the trim value, and correspondingly a
negative value decreases it.
The TO_CURRENT keyword reads the current values from the axis and
sets the trim to those values when the axis is centred.

Ok, so let's look at an example that uses the throttle's Range and Antenna knobs
to adjust the trim on the joystick X and Y axes, using Type 1 statements.

RNG 1 12 TRIM (JOYX, 20+) TRIM (JOYX, 20-)
ANT 1 12 TRIM (JOYY, 20-) TRIM (JOYY, 20+)

Rotating the ANT knob clockwise for example keeps subtracting 20 from the Y
axis values, which is equivalent to pushing the joystick forwards. And this would
be useful for a plane that was climbing when the joystick was centred.

I could set up Button S2 on the joystick to cancel the effects of the trimming, like this:

BTN S2 TRIM (JOYX, 0) TRIM (JOYY, 0) Rem Remove the trim from both axes

or the following line is equivalent to this:

BTN S2 TRIM (JOYSTICK, 0)

I could also add a specific amount of trim to axes like this:

BTN S4 TRIM (JOYX, 5) TRIM (JOYY, -10)

Finally I could hold the joystick in a position, and set the trim so that when the
joystick is released, it maintains those trim values, like this:

BTN S2 /I TRIM (JOYSTICK, TO_CURRENT) Rem Trim to current values

THRUSTMASTER®

HOTAS Cougar Reference Book 127

 /O TRIM (JOYSTICK, 0) Rem Cancel any trim
There's a slight problem here though. Notice how I said "when the joystick is
released." Let me explain further. If you're flying along and you're holding your
joystick forwards away from its central position, to keep your aircraft level
because it always wants to climb, and then trim the joystick to its current values,
what you would probably expect is that you can return the joystick to its central
position, and your aircraft keeps flying level. But that isn't going to happen with
the above statement unless you immediately release the joystick when you set
the trim. Why?
Because the value you want to trim to is calculated assuming that the joystick is
in its central position. But it's not. You're pushing it forward at the time the trim is
set.
And so as soon as you set the trim, it's going to look like you're actually pushing
the joystick a lot further forward, so that when you bring the joystick back into its
central position, it appears to the sim that you're holding it forward in the position
where you were maintaining level flight. You'll probably need to re-read this last
paragraph to grasp what I'm getting at. I did!
So how can we overcome this?
Well, we can do it the easy way, or the hard way. Here's the easy way then:

BTN S2 HOLDTRIM (JOYSTICK)

Now the reason why I'm going to show you the "hard" way soon is that it makes it
easier to understand how to use this statement. So the way to use this statement
is like this. Hold your joystick in a position where your aircraft is flying level. Now
press and keep pressing button S2. Bring your joystick back to its central position,
and only then stop pressing button S2. So long as S2 is being pressed whilst you
move the joystick, then your plane will continue to fly level, and once the joystick
is back in its central position, then you can let go of S2 and put your feet up.

Now let's see the "hard" way of implementing this. Well in fact it's not that hard,
and it helps to explain what the above statement does. We need to use the TRIM
TO_CURRENT statement in combination with the LOCK and UNLOCK
statements (see later notes), like this:

BTN S2 /P LOCK (JOYSTICK, LASTVALUE) TRIM(JOYSTICK, TO_CURRENT)
 /R UNLOCK (JOYSTICK)

Now, whilst I'm pushing my joystick forwards to maintain level flight, if I press and
keep pressing button S2, the aircraft will maintain level flight, whilst I return the
joystick to its central position, and when I'm there, I release button S2. So how
does this work. Well the first thing that happens when I press S2 is that the
joystick is "locked" to its current values. And straight away as well, the trim is
calculated from these locked values. When the joystick is returned to its central
position, we unlock the joystick by releasing S2, and the plane flies level because
we've trimmed the axes already. And this is effectively what the
BTN S2 HOLDTRIM (JOYSTICK) gets translated into by the compiler.

THRUSTMASTER®

128 HOTAS Cougar Reference Book

NOTES

1. A TRIM value change results in an integer addition or subtraction to the axis

curve, i.e. it just shifts the whole curve in one direction or another. It doesn't
matter whether you are using a linear or adjusted response curve.

2. A trimmed linear response curve will not allow for the full range of axes.

3. Reversing an axis will not alter the direction of the TRIM function - it stays the

same. Digital statements don't reverse with their analogue counterparts.

4. Be careful where you put the + and - signs in a trim statement, as with many

axes statements. On the left hand side, they specify the trim amount, on the
right of the number the add/subtract to the currently set trim value. See the
section titled "Understanding the Mouse Device and the Microstick", to
understand better the difference between "+ -" signs and their effect when on
the left or right hand side of values. The Composer will talk you through this
correctly.

5. These HOLDTRIM statements are all perfectly valid:

BTN T6 a b HOLDTRIM (RNG) c d
BTN S4 /P a HOLDTRIM (RNG)
 /R b
BTN S1 a { HOLDTRIM (JOYY) b HOLDTRIM (ANT) }

Note as well that multiple HOLDTRIM statements as in this last must be
grouped in curly brackets.

6. You cannot have a macro called TRIM, but you can have Trim and Trim_Hold

for example.

7. You can use the AutoRepeat (/A) slash modifier in conjunction with the TRIM

statement to control any axis from any button or hat. For example these
statements trim the joystick axes.

BTN H1U /A TRIM (JOYY, 5-) DLY(120)
BTN H1D /A TRIM (JOYY, 5+) DLY(120)
BTN H1L /A TRIM (JOYX, 5-) DLY(120)
BTN H1R /A TRIM (JOYX, 5+) DLY(120)

In addition, it is also possible to operate axes which aren't even physically present
(i.e. rudder or toe brakes) using statements such as these on their respective
axes. (See the TM reference book regarding the Apply enable/disable Windows
axes states checkbox on the Cougar Control Panel for further information as to
how to report axes present to Windows even if they're not physically present.)

THRUSTMASTER®

HOTAS Cougar Reference Book 129

For example:

BTN H4L /A TRIM (RDDR, 5-)
BTN H4R /A TRIM (RDDR, 5+)

6.5 DISABLING AXES

All of the analogue axes will be reported to the sim as being present by default,
except for the Microstick axes. There are some circumstances when it is
desirable for them to be disabled, such as when you want to use them to produce
only keyboard characters with digital type statements, before the sim starts. Axes
can be disabled with configuration statements in the joystick file as follows:

Configuration statement

DISABLE Axis_Identifier

where :

Axis_Identifier is:

THR
RNG, ANT (together termed ROTARIES – see below)
LBRK, RBRK (together termed TOEBRAKES – see below)
RDDR

Furthermore, it makes sense to be able as well to define a group of these axis
identifiers together, so that they can be disabled with a single statement. For example:

DISABLE ROTARIES is converted by
the compiler into

DISABLE RNG
DISABLE ANT

DISABLE
TOEBRAKES

DISABLE LBRK
DISABLE RBRK

As with all configuration statements, these will appear on their own line in the
joystick file, with only a REM statement being a permitted addition.

So, statements

DISABLE THR Rem Disable the throttle
DISABLE ANT Rem Disable the antenna knob on the TQS

are fine, whereas:

THRUSTMASTER®

130 HOTAS Cougar Reference Book

DISABLE (THR, ANT, RNG) isn't.

It may look neater but there are advantages from both a programming and user
point of view in keeping everything on separate lines (for one thing it's easier to
REM out a single statement). Note that this new DISABLE statement replaces the
USE NO statement found in the original TM syntax (USE NOMOUSE, USE
NOTHR) etc. Also, as axes are present by default, you don't need to use
statements such as USE RCS, USE TQS etc. as per the previous TM HOTAS.

6.5.1 Disabling and Enabling an axis in flight with LOCK, UNLOCK

So now we know how to disable an axis using a configuration statement. Once
the axis is disabled, it cannot be seen by the sim as an analogue axis at all. So it
either does nothing, or it can be programmed digitally.

Now there are some occasions when you might for example, want to be able to
move an analogue axis to take advantage of the digital type statement programmed
onto it, but not change the analogue value from it. Unfortunately, you cannot
remove or add axes when in a game – that will usually result in your system locking
up, the game crashing or generally any other similarly undesired result.

So if we're not allowed to remove an axis in flight, and add it back, the only way
we can get round this is to hold the axis at a certain defined value, and move the
axis allowing only its digital output to change. We can do this with the LOCK
statement, and enable the axis again with the UNLOCK statement. Here's the
syntax:

Command syntax

LOCK (Axis_Identifier, Lock_Value%)

UNLOCK (Axis_Identifier)

where:

Axis_Identifier is:

JOYX, JOYY (together termed JOYSTICK)
THR
RNG, ANT (together termed ROTARIES)
MIX, MIY (together termed MICROSTICK)
LBRK, RBRK (together termed TOEBRAKES)
RDDR

Lock_Value is:

THRUSTMASTER®

HOTAS Cougar Reference Book 131

either 0 to 100%, or simply just LASTVALUE

For example:

BTN S2 /I LOCK (THR, 100%)
 /O UNLOCK (THR)

The LOCK statement is used therefore to force the axis to be seen generating a
single value, either something in the region of 0 to 100% of its range, or the last
value it was generating with the LASTVALUE syntax. The analogue nature of the
axis can be restored using the UNLOCK statement.

Confused? Well the easiest way to understand this is to look at some examples.
So here goes:

1. Let's say that we want the RNG knob to be seen purely as an analogue axis,
except when Button S3 is held in, when we want it to generate a digital statement,
maintaining the last RNG value.

RNG /I LOCK (RNG, LASTVALUE) 2 5 a b c d e
 /O UNLOCK (RNG)

So when button S3 isn't pressed, the RNG knob is seen as a default analogue
axis, and is assigned its action by the game. When Button S3 on the joystick is
pressed, the RNG knob now no longer changes its analogue output – it holds the
value it was last at, but now it can be turned to generate the "a b c d e" characters
as per the Type 2 statement programmed onto the /I statement. I hope that's fairly
clear, so let's see just how powerful this is:

2. ANT /U /I LOCK (ANT, LASTVALUE) 2 10 1 2 3 4 5 6 7 8 9 0
 /O UNLOCK (ANT) Rem Game assigned Axis
 /M UNLOCK (ANT) Rem Game assigned Axis

 /D LOCK (ANT, 0%) 3 Lower_flaps ^ Raise_Flaps

With the dogfight switch in the down position (/D), the Antenna knob is going to
be used digitally to operate the flaps with a Type 3 statement, and the game will
read a zero value from the control it has assigned to the Antenna knob. When the
dogfight switch is moved to the middle position (/M), the Antenna knob will
behave purely as its assignment by the game. In the dogfight switch's up position
(/U), then if Button S3 isn't being pressed, it'll still behave as a default analogue
control. When S3 is held in, the last Antenna analogue value will be locked, and
the numbers 1 to 0 will be generated when the Antenna knob is rotated.

Using LOCK and UNLOCK, in combination with digital statements, provides a
very powerful means of programming any axis. Do be careful though – the
potential to get things rather wrong exists here!

THRUSTMASTER®

132 HOTAS Cougar Reference Book

NOTES

1. You cannot disable the Joystick or Microstick axes with the DISABLE

configuration statement. The joystick axes have to be present - a requirement
of DirectX.

2. When you disable an axis in a file, the controllers have to go through a sequence

whereby they need to report to Windows that an axis is no longer present. This
can take a little time, and so downloading such a file, that results in a change in
the number of currently reported axes to Windows, will take a little longer.

3. LOCK and UNLOCK statements must be preceded by /U, /M, /D, /I, or /O when

used in axis statements. So this would generate a compiler error.

ANT LOCK (RNG, LASTVALUE)

But: BTN S2 LOCK (RNG, LASTVALUE) is fine!

6.6 AXIS MAPPING (SWAP)

Axis mapping allows you to swap the axes about, both before taking off, and in-
flight. This is all achieved through the SWAP statement.

Configuration statement

 USE SWAP (Axis_Identifier, Axis_Identifier)

Command syntax

SWAP (Axis_Identifier, Axis_Identifier)

where:

Axis_Identifier is one of the following:

JOYX, JOYY (together termed JOYSTICK)
THR
RNG, ANT (together termed ROTARIES)
MIX, MIY (together termed MICROSTICK)
LBRK, RBRK (together termed TOEBRAKES)
RDDR

For example:

THRUSTMASTER®

HOTAS Cougar Reference Book 133

USE SWAP (ANT, RNG)

results in the Antenna and Range axes on the throttle being swapped around.
More examples:

BTN S1 SWAP(JOYY, THR) REM switch the Y and Throttle axes
BTN S2 SWAP(JOYSTICK, MICROSTICK) REM switch the Joystick X and
 Y with Microstick X and Y

The last example is converted by the compiler into:

BTN S2 SWAP(JOYX, MIX) SWAP(JOYY, MIY)

and therefore it's important to note that if you're swapping more than one axis at a
time, you can only do so with the same number of axes. So:

BTN S2 SWAP(JOYSTICK, MICROSTICK) is fine, but

BTN S2 SWAP(JOYSTICK, THR)

will result in a compiler error, because JOYSTICK defines 2 axes (JOYX and
JOYY) but the THR is a single axis.

NOTES

Swapping axis results in their response curves being swapped with them.
However any digital statements on those axes do not get swapped over.

6.7 REVERSING THE DIRECTION OF AN AXIS
 (REVERSE, FORWARD)

It is possible to reverse the default direction of an axis, using the REVERSE
statement:

Configuration statement

USE REVERSE (Axis_Identifier)

Command syntax

REVERSE (Axis_Identifier)
FORWARD (Axis_Identifier)

THRUSTMASTER®

134 HOTAS Cougar Reference Book

where:

Axis_Identifier is one of the following:

JOYX, JOYY (together termed JOYSTICK)
THR
RNG, ANT (together termed ROTARIES)
MIX, MIY (together termed MICROSTICK)
LBRK, RBRK (together termed TOEBRAKES)
RDDR

This can be very useful for example in a helicopter sim if you want to use the
throttle in the opposite direction compared to a jet, or if you're like me and you like
your rudders to work in the opposite direction to a real aircraft!

If I wanted to by default change the direction of my rudders, without needing to
press a button, I could do so by placing USE in front of the REVERSE statement
to convert it into a configuration statement like this:

USE REVERSE (RDDR)

This would then appear near the top of my joystick file on its own line. Let's look
at another example:

BTN H1U /I REVERSE (JOYY)
/O FORWARD (JOYY)

Pressing HAT 1 Up, with S3 in would result in the joystick's Y axis working in
reverse. Pressing HAT 1 Up without button S3 in would return the joystick Y axis
to its normal direction. Note that as with other properties of axis statements, the
effect of the REVERSE or FORWARD statements stays with the axis if it is
mapped or changed elsewhere, but also note that digital statements do not get
reversed.

6.8 THE USE AXES_CONFIG STATEMENT

We've discussed in depth how to disable, swap and reverse axes on a per axis
basis. It is also possible to set all of this up in a configuration statement in a
joystick statement using the USE AXES_CONFIG statement, which the compiler
converts into the necessary configuration statements discussed previously. This
is a complex statement, and one that will rarely be used, but it can be useful in
some circumstances …

THRUSTMASTER®

HOTAS Cougar Reference Book 135

Let’s look at the syntax first …

Configuration statement:

 USE AXES_CONFIG (DX-axis1, HOTASaxis1), (DX-axis2, HOTASaxis2) etc.

ie. DX-axis1 is assigned to HOTASaxis1

So what’s the difference between a DX-Axis and a HOTAS axis? The last one’s
the easiest to explain so I’ll do that one first. A HOTAS axis is any of the 10
physical axes on the Cougar (ie. JOYX, JOYY, THR, RDDR, ANT, RNG, MIX,
MIY, LBRK, RBRK). A DX-Axis is a little harder to explain…

It is the axis that the Cougar reports to DirectX as being present, which a game
then allocates a function to. Now, although we have 10 available axes to use,
DirectX 8 only supports 8 axes for USB devices (and DirectX 7 only 6). What we
do to make your life easier is to say to Windows, “Use the Joystick X axis for DX-
axis1, Joystick Y axis for DX-axis 2” etc. It doesn’t know whether we have a
throttle, RNG knob etc. because it uses these axes even if you’re using a steering
wheel or other controller. The DX-axes are named with the Identifiers below, and
are assigned with the Cougar to:

DirectX axis HOTAS assigned axis Syntax
X axis Joystick’s X axis JOYX
Y axis Joystick’s Y axis JOYY
Z axis Throttle THR

Rotation X Throttle’s Antenna knob ANT
Rotation Y Rudder’s Left Toe brake LBRK
Rotation Z Rudder RDDR

Slider 0 Throttle’s Range knob RNG
Slider 1 Rudder’s Right Toe brake RBRK

Note: The Toe brake assignments may be reversed when the Cougar rudders are
produced

Getting back to how we use this statement, there are 4 basic rules to remember:

1. Any axis (DirectX or HOTAS Cougar) not reported will be disabled for

analogue.
2. Axes in brackets are mapped to each other.
3. Any HOTAS Cougar axis with a negative sign ‘-‘ in front of it will be reversed.
4. You must have axes 1 and 2 present, as Windows requires them to be present.

So let’s look at an example:

USE AXES_CONFIG (1, RNG), (2, ANT), (3, -THR)

THRUSTMASTER®

136 HOTAS Cougar Reference Book

In this example:

1. The Range knob is assigned to DirectX axis 1, and so will be seen as a joystick

X axis.
2. The Antenna knob is assigned to DirectX axis 2, and so will be seen as a

joystick Y axis.
3. Throttle axis is assigned to DirectX axis 3, which is normal but the negative

sign in front of it means that the throttle is reversed - useful for helicopter sims.
4. No other axes are reported and so are not available to a game. They can on

the Cougar be programmed digitally of course.

You can see that with a single statement, it is possible to swap, disable, and
reverse axes all in one statement.

NOTES

1. You cannot use the configuration statements DISABLE, USE REVERSE or

USE SWAP in conjunction with the USE AXES_CONFIG statement. Doing so
will generate a compiler error. But on button statements, you can still use
SWAP, REVERSE statements if the axis is present.

2. It's much easier to use the USE PROFILE statement in conjunction with the

Cougar Control Panel! See earlier notes.

3. DirectX does its own mapping of axes reported to it, so when using the Cougar

Control Panel, you may find that the results on your Cougar axes don't match
what you'd expect. You'll just need to experiment to get the required results,
I'm afraid.

7. Mouse Programming

7.1 UNDERSTANDING THE MOUSE DEVICE AND THE
MICROSTICK

In the final part of this chapter, we're going to look at how the mouse device
works and show you a few clever things we can do with it. But I'm not going to go
straight into the associated statements and syntax, as we've done before,
because we actually need to understand a little as to how a mouse works.

THRUSTMASTER®

HOTAS Cougar Reference Book 137

I'm sure by now you've used the microstick on the TQS throttle and thought of it
as a mouse controller, because it moves the mouse. However, it is important to
realise this point:

The Microstick is NOT a mouse.

The microstick is like a little mini-joystick. It usually controls the mouse, because
the compiler tells it to. The compiler assigns to its two axes, (MIX and MIY) the
mouse device, without you being aware of this.

So what's a mouse device then? And why can't we just assign the mouse X and
Y axes to the microstick's X and Y axes?

The reason is this: the mouse as a device does not consist of fixed axes as
such. Confused? Well, if you think about a joystick, when you move it around, it
generates fixed X and Y coordinates for itself. If the joystick was controlling a
cursor as it does in Foxy's Joystick Analyser, its movement would correspond to
the movement of the joystick. If the joystick stopped moving, the cursor would
stop moving too. But the microstick programmed as a mouse behaves differently.
If you move that like the joystick, and hold it in a position away from its centre, the
mouse keeps moving. It doesn't stop even though the microstick is stationary.
This is because the microstick isn't telling the computer "Hey, move the mouse to
this X, Y position and then stop," rather it's saying "Keep moving the mouse at a
speed of 3 along its X axis, and a speed of 2 along its Y axis until I instruct you
differently." Then, when the microstick is returned to the centre position, the
cursor doesn't move to the centre of the screen; it stops where it is, because the
microstick has changed its instructions to "OK, you can stop moving the mouse
along its X and Y axes now."

So a mouse cursor can be made to move by assigning non zero values to
MouseX and/or MouseY (MSX and MSY). And if we instruct the microstick,
to change the values of MSX and MSY, then the microstick will control the
mouse.

And the reason why we've implemented this in this way, should I hope now be
starting to dawn upon you. We can use anything to adjust MSX and MSY. The
Microstick, the joystick, a hat, a button, logical flags …. you name it. And they can
do so at the same time. So we could program the microstick for quick movement
of the mouse, and a hat for fine movement!

7.2 USE MTYPE - THE SIMPLEST WAY OF
ASSIGNING THE MOUSE TO THE MICROSTICK

Later on in this chapter, I'm going to discuss how you can setup the mouse onto
the microstick, to get exactly the response you want from it. But to do this,
requires a detailed understanding of using Digital Type statements using MSX

THRUSTMASTER®

138 HOTAS Cougar Reference Book

and MSY statements, and it's not for the faint hearted. However, thankfully there
are a couple of statements that we can use to assign the mouse to the microstick
very easily. These are the USE MTYPE and USE MICROSTICK AS MOUSE
statements. Let's start off with the USE MTYPE statement as that's very easy to
understand and use.

Configuration statement:

USE MTYPE Type - REVERSE_type

where:

Type: is A1 to A5 and describes which buttons on the throttle will be used for

the left and right mouse buttons as follows:

Type Left mouse button Right mouse button
A1 T1 T6
A2 T6 T1
A3 T1 none
A4 T6 none
A5 none none

T1 is the button built into the microstick - the microstick depresses to

 activate it, and T6 is the button on the Range knob.

REVERSE_type is REVERSE_UD and/or REVERSE_LR

The REVERSE_UD reverses the Up and Down (Y) mouse axis
direction, and REVERSE_LR reverses the Left and Right (X) directions.

Examples: USE MTYPE A3

assigns the mouse to the microstick, and the mouse left button to T1.

USE MTYPE A5 - REVERSE_UD

assigns the mouse to the microstick, reversing the direction of its Y axis,
and doesn't assign any mouse buttons.

NOTES

1. The mouse response is set up by the compiler to give a pre-defined mouse

response, which should be an acceptable response for resolutions up to 1024
by 768. You cannot alter the mouse response with a USE MTYPE statement,
so if you're running at a higher resolution, or want a more/less responsive

THRUSTMASTER®

HOTAS Cougar Reference Book 139

mouse, then you need to use the USE MICROSTICK AS MOUSE statement
that we're coming onto in the next section.

2. The microstick as we've said before is an analogue controller. It isn't a 4 button

controller, as per the original TM HOTAS, and therefore buttons T11 to T14 no
longer exist for programming. You can emulate T11 to T14 with appropriate
Type statements if you so wish - see the help topic in Foxy's help file titled: "
Converting TQS T11 - T14 statements for use with the Cougar's microstick.".
Remember that the Microstick is just that – a controller with 2 axes, not a series
of buttons. It's far more powerful that way.

3. If you assign any curves to the Microstick, they will not affect the mouse, as it is

assigned as a digital statement, and digital statements are not affected by
analogue curves.

4. If you use a USE MTYPE statement in your joystick file, that sets up any

mouse button on T1 or T6, then you cannot program those positions. So let's
say that we have:

USE MTYPE A3

which the compiler, invisible to you, also sets up the statement:

BTN T1 /H MOUSE_LB

Now, if you elsewhere in your file have:

BTN T1 somemacro or BTN T1 /H MOUSE_RB

then the compiler will generate an error. If you want to use the USE MTYPE
statement to setup the mouse onto the microstick, but want to program T1 and/or
T6 separately, then use a USE MTYPE A5 or appropriate statement that doesn't
assign any mouse button to the throttle button you wish to program.

7.3 USE MICROSTICK AS MOUSE

The second way of assigning the mouse to the microstick is with the USE
MICROSTICK AS MOUSE statement. This has the advantage over the USE
MTYPE statement in that you can change the default behaviour of the mouse, ie.
how fast it moves. It also assigns the left mouse button to T1 on the microstick by
default, although you can turn this off with the - NO_BUTTON modifier. For most
flight sims of course, we want the left mouse button assigned to T1. The USE
MICROSTICK AS MOUSE statement effectively instructs the compiler to set up
either digital Type 6 statements for the mouse on the microstick, or if a starting
value is provided, Type 5 statements.

THRUSTMASTER®

140 HOTAS Cougar Reference Book

Let's take a look at the syntax, then:

Configuration statements

For Type 6 statements: (No starting value provided)

USE MICROSTICK AS MOUSE (Scale value, Increment value) - Modifier

For Type 5 statements: (Starting value provided)
USE MICROSTICK AS MOUSE (Scale value, Increment value, Starting value) -
Modifier

(Note: USE MICROSTICK AS MOUSE () statements also assign the left mouse
button to button T1 on the microstick, unless a - NO_BUTTON modifier is present.)

where:

Scale value: A number between 2 and 12. This affects how many

bands the microstick axes are divided up into.

Increment value: Incremental value for each band, a number between

1 and 63.
(Note that the Scale value multiplied by the Increment
value must be less than 128. Don't even think about
asking why!)

Starting value: The starting value for a Type 5 statement, from which

to apply the incremental value to. This is the initial
speed the mouse will move at when the microstick is
moved away from its centre position.

Modifier:

REVERSE_UD: Reverses the Microstick's Y axis.
REVERSE_LR: Reverses the Microstick's X axis.
NO_BUTTON: Instructs the compiler not to set up button T1 as the

left mouse button. This allows you to program button
T1 with BTN T1 statements.

Let's dive straight into some examples.

 USE MICROSTICK AS MOUSE (12, 2)

This configuration statement would assign the mouse to the microstick, and setup
T1 as the left mouse button. Take a look at these two statements:

USE MICROSTICK AS MOUSE (6, 4)
USE MICROSTICK AS MOUSE (7, 3, 2)

THRUSTMASTER®

HOTAS Cougar Reference Book 141

These too would also assign the mouse to the microstick, and set up T1 as the
left mouse button. So here we have 3 statements, that are clearly different, but
I've just said that they all do the same. Well, I'm correct in saying that they all do
the same in terms of assigning the mouse to the microstick, but they differ in the
mouse response you'll see on the microstick. Which means of course that I need
to try to explain what the numbers in the brackets do.

Well we're going to cover exactly what they do in the next section, which makes
for some pretty tough reading. So here's a less heavy explanation which suits my
simple brain!

Let's consider the Microstick's X axis only. What any USE MICROSTICK AS
MOUSE statement does is to split the axis up into a series of bands or regions, as
in the diagram below. (For sake of argument, I've made all these bands the same
size, although that's not actually the case with this statement for the purists
amongst you.)

Now the green band represents the centre of the axis, ie. the Microstick is in its
untouched centre position. Here of course we don't want the mouse to move.
Either side of centre, are two yellow bands (1), which is where we want the
mouse to start moving when the microstick is moved into these bands. And there
are a couple more bands (2 & 3) that the microstick will move into as it is moved
further away from its centre position.

Let's go back to our syntax:

 USE MICROSTICK AS MOUSE (Scale value, Increment value, optional Starting value)

The Scale value determines how many bands the microstick axis is split up into.
The value for the Scale value isn't the same as the number of bands, it's actually
part of an equation, but basically the larger the Scale value, the greater the
number of bands the axis is split into.

The Increment value determines how much faster to move the mouse as the
microstick is moved into each band. Let me explain with an example, illustrating
what happens when the microstick is moved from its centre position to its
extreme position, as it moves through these bands. I'll pick up on the Starting
value later.

USE MICROSTICK AS MOUSE (4, 2)

THRUSTMASTER®

142 HOTAS Cougar Reference Book

Band C: The microstick is in its centre position, and so the mouse doesn't move.
Band 1: The mouse now starts moving at a rate given by the Increment value, a

"speed of 2" if you like.
Band 2: The rate of the mouse is increased by the Increment value, so it now

moves at a speed of 4.
Band 3: The rate of the mouse is increased by the Increment value, so it now

moves at a speed of 6.
Band 4, 5, 6 etc.

Depending on how many bands the Scale value has created, you can
see that the mouse moves faster and faster as the microstick is moved
through each successive band. Moving back through the bands towards
the centre position will of course decrease the mouse rate as well.

Let's now consider the effect of providing a starting value.

USE MICROSTICK AS MOUSE (4, 2, 1)

The Starting value determines the rate at which the mouse will move in band 1.
After that, it's exactly the same with the mouse speed increasing by the Increment
value as the microstick is moved though the rest of the bands. So:

Band C: The microstick is in its centre position, and so the mouse doesn't move.
Band 1: The mouse now starts moving at the rate given by the Starting value, a

"speed of 1" if you like.
Band 2: The rate of the mouse is increased by the Increment value, so it now

moves at a speed of 3 (ie. 1 + 2, the Starting value + Increment value).
Band 3: The rate of the mouse is increased by the Increment value, so it now

moves at a speed of 5.
Band 4, 5, 6 etc.

Depending on how many bands the Scale value has created, you can
see that the mouse moves faster and faster as the microstick is moved
through each successive band. Moving back through the bands towards
the centre position will of course decrease the mouse rate as well.

So don't worry if you don't take all of this in at first, I'm just trying to get across a
general message: Bigger numbers means a faster mouse in general.

We can also reverse the direction that the mouse moves in with the microstick, as
we've done with other statements we've looked at in previous chapters, like this:

USE MICROSTICK AS MOUSE (7, 3, 2) - REVERSE_UD
USE MICROSTICK AS MOUSE (7, 3, 2) - REVERSE_LR

Before I leave this section, I should for the sake of completeness cover the other
uses for this statement, and that is assigning the mouse to other axes.

THRUSTMASTER®

HOTAS Cougar Reference Book 143

7.3.1 Assigning other axes to mouse axes

Now, the USE MICROSTICK AS MOUSE statement is in fact, just a special case of
the following statement (special because it also assigns the left mouse button to T1):

Configuration statements

For Type 6 statements:

USE Axis_Identifier AS Mouse_Axis (Scale value, Increment value) - REVERSE_type

For Type 5 statements:

USE Axis_Identifier AS Mouse_Axis (Scale value, Increment value, Starting value)
- REVERSE_type

where:

Axis_Identifier is one of the following:

JOYX, JOYY (together termed JOYSTICK)
THR
RNG, ANT (together termed ROTARIES)
MIX, MIY (together termed MICROSTICK)
LBRK, RBRK (together termed TOEBRAKES)
RDDR

Mouse_Axis is one of the following:

 MOUSE
 MOUSEX
 MOUSEY

MOUSEZ (the wheel on a mouse)

Scale value: A number between 2 and 12. This affects how many

bands the Axis_Identifier will be split into.
Increment value: Incremental value for each band, a number between

1 and 63.
(Note that the Scale value multiplied by the Increment
value must be less than 128. Don't even think about
asking why!)

Starting value: The starting value for a Type 5 statement, from which
to apply the Incremental value to. This is the initial
speed the mouse will move at when the
Axis_Identifier is moved away from its centre position.

THRUSTMASTER®

144 HOTAS Cougar Reference Book

REVERSE_type: reverses an axis direction and is either:

REVERSE_UD: when the Axis_Identifier consists of 2 axes (JOYSTICK,
ROTARIES, MICROSTICK, TOEBRAKES).

REVERSE_LR: when the Axis_Identifier consists of 2 axes this can
be used on its own or in conjunction with
REVERSE_UD.

REVERSE_DIR: reverses a single axis. Cannot be used with
REVERSE_UD, or REVERSE_LR.

So we can use other axes to control mouse axes, in exactly the same way. Here
are some examples then:

USE ROTARIES AS MOUSE (6, 4)
USE JOYSTICK AS MOUSE (11, 2, 0)
USE ANT AS MOUSEY (5, 2) - REVERSE_DIR
USE JOYY AS MOUSEZ (9, 3)

This last one controls the mouse wheel using the joystick Y axis!

In summary then we've looked at two statements that can be used to set up the
mouse onto the microstick, and in the last section, onto other axes. Remember as
well that when we looked at HAT programming, we could also assign the mouse
to a hat using the statement:

USE HAT1 AS MOUSE (2)

for example. In fact we can even have the mouse on the microstick, and on the hat
at the same time, using the microstick for getting the mouse to the required position
quickly, and the hat for fine adjustments of that position! [Insert applause here]

I want to now explain exactly what is going on, or I should say how the compiler
interprets your statements and what it creates in the way of digital type
statements for the microstick axes. This is pretty tricky to explain, and hence the
reason why I didn't jump into it straight away. This next section is for advanced
users only (believe me it took me ages to get my head round this!). But if you do
get your head round this, then you can create your own custom mouse devices
on any axis, to get exactly the response you want. You will also then be able to
mix mouse statements with other digital statements on the microstick, so for
example with button S3 out you could have the microstick controlling your
targeting cursor, and with S3 in, controlling your mouse. Clever huh!

THRUSTMASTER®

HOTAS Cougar Reference Book 145

7.4 CREATING A CUSTOM MOUSE ON THE MICROSTICK

We've seen how we can assign the mouse to the microstick in the previous
sections with the USE MTYPE and USE MICROSTICK AS MOUSE statements.
What these statements do quite simply, is to program the microstick axes with
digital type statements. In this section then, I want to explain how you can create
your own digital statements to program the mouse onto the microstick, or
elsewhere.

You can program the microstick with any digital statements, because they are
after all just axes subject to the same rules as other axes. I'll start off
demonstrating the use Type 1 and Type 2 statements, although there's no reason
why we shouldn't use any of the 6 digital type statements. Let's take a look at a
some appropriate Type 1 digital statements:

MIX 1 14 MSX (2+) MSX (2-) MSX (0)
MIY 1 14 MSY (2-) MSY (2+) MSY (0)

Well, these look like ordinary Type 1 statements, except that we have some "-"
and "+" signs in them. To understand these, I'll walk you through what happens
when we move the microstick. Let's remind ourselves as to how a Type 1 digital
statement works. If we had the following:

MIX 1 6 r l c

then the microstick X axis, if moved from its extreme left, to its extreme right, and
then all the way back again to its extreme left, would produce the characters:

r r r c r r r l l l c l l l

Now in our example, we have:

MIX 1 14 MSX (2+) MSX (2-) MSX (0)

We're not producing now a series of characters. The numbers in the brackets
specify what to add or subtract to the current mouse buffer - in other words, how
much faster, or slower, should the mouse move.

Let's say the mouse is stationary, and the microstick is in its centre position. The
centre position of the microstick's axis is given by the centre "character" part of
the digital axis statement - ie. MSX (0). This instructs the mouse device to have
zero speed, ie. to be stationary along its X axis. As we move the microstick to the
right, the mouse will start to move to the right at a "rate of 2", as a positive 2 is
added to the mouse buffer. Move the microstick more to the right, and it'll move
the mouse at a rate of 4 …. move it all the way to the right, and it'll move it right at
a rate of 14 (7 x 2). Let go of the microstick and the mouse's rate of movement to
the right slows down as successive amounts of rate are subtracted from the

THRUSTMASTER®

146 HOTAS Cougar Reference Book

mouse buffer, and hence mouse speed, until the stick is at the centre. It stops
moving here because once again, we're at the centre "character" of the
statement, ie. MSX (0).

The same occurs for exactly the same reason when the microstick is moved up
and down.

Notice that if I wanted the microstick Y axis to move the mouse in the same way
that a joystick would (pull back and the mouse goes up), then I'd need to change
the statement to:

MIY 1 14 MSY (2+) MSY (2-) MSY (0)

This is because if you increase the Mouse Y buffer (MSY) the mouse moves
down the screen, and vice versa. An important syntax point to note therefore is
the inclusion of "+" or "-" characters within the brackets, and the fact that they
appear after the number. They indicate that the value before them is either to be
added (+) or subtracted (-) from that mouse axis's buffer. You'll understand this
better when we look at Type 2 statements now. I hope I haven't lost you. Yet!

I could also use Type 2 statements to assign the mouse to the microstick axes:

MIX 2 9 MSX(-8) MSX(-4) MSX(-2) MSX(-1) MSX(0) MSX(1) MSX(2) MSX(4) MSX(8)
MIY 2 9 MSY(8) MSY(4) MSY(2) MSY(1) MSY(0) MSY(-1) MSY(-2) MSY(-4) MSY(-8)

These are standard type 2 digital statements. They divide up each axis into 9
equal bands, and assign the actual mouse buffer values into each band. So
moving the microstick right along its X axis, results in it initially moving at a rate of
1, and then moving the microstick further it'll move at a rate of 2 … then 4 … and
finally 8. Notice here the position of the "-" sign. It is before the number this time,
which means it doesn't get subtracted from the mouse buffer. Rather, when the
microstick moves into this area, it takes up that exact negative value.

In terms of syntax, note that the following statements are the same:

MIX 2 7 MSX(-4) MSX(-2) MSX(-1) MSX(0) MSX(1) MSX(2) MSX(4)
MIX 2 7 MSX(-4) MSX(-2) MSX(-1) MSX(0) MSX(+1) MSX(+2) MSX(+4)

i.e., if a "+" sign is missing, it is assumed to be there on the left of the value.

Whereas:

MIX 2 7 MSX(-4) MSX(-2) MSX(-1) MSX(0) MSX(1) MSX(2) MSX(4)
MIX 2 7 MSX(4-) MSX(2-) MSX(1-) MSX(0) MSX(1+) MSX(2+) MSX(4+)

would produce very different results.

THRUSTMASTER®

HOTAS Cougar Reference Book 147

With this all in mind, let's see what the Compiler does when it sees a USE
MICROSTICK AS MOUSE statement in your joystick file. The Compiler converts
these statements into Type 5 and Type 6 digital statements, which are effectively
the same as Type 2 and Type 1 statements respectively, except that we can
determine the sizes of the bands. Let's recall the syntax the for this statement:

USE MICROSTICK AS MOUSE (Scale value, Increment value, optional Starting value)

I said before that the Scale value is used to determine the number of bands to
divide the axis into. It does this via the formula:

Number of bands = (Scale value x 2) - 1

The Compiler then creates these bands with different sizes, using a complex
formula I won't go into, and creates Type 6 digital statements if no Starting value
is provided, or Type 5 statements if a Starting value is provided.

Type 6 Digital Statements

USE MICROSTICK AS MOUSE (2, 2)

MIX 6 3 (2 24 75 98) MSX(2+) MSX(2-) ^
MIY 6 3 (2 24 75 98) MSY(2-) MSY(2+) ^
BTN T1 /H MOUSE_LB Rem Hold down the left mouse button when T1 is pressed

Now, we've done something a little different here. I don't have MSX(0) and
MSY(0) as the centre characters, like this:

MIX 6 3 (2 24 75 98) MSX(2+) MSX(2-) MSX (0)
MIY 6 3 (2 24 75 98) MSY(2-) MSY(2+) MSY(0)

Let me explain why as there are advantages and disadvantages in having null
characters (^) instead of MSX (0), MSY (0). These type 6 statements differ from
Type 5 statements in that they add or subtract to the X and Y values in the mouse
buffer, whereas Type 5 statements set the actual values for the mouse buffer.
When we use MSX(0) and MSY(0) as centre characters, these reset the mouse
buffer to zero so that the mouse is guaranteed to stop moving at the centre
position of the axis controlling it. That's a good thing in general. But the beauty of
using null characters as centre characters is that we can then assign or control
the mouse from hats and buttons as well as the microstick, and ensure
predictable results. So I could have:

USE MICROSTICK AS MOUSE (2, 2)
BTN H1L MSX(1-)
BTN H1R MSX(1+)

THRUSTMASTER®

148 HOTAS Cougar Reference Book

and use the microstick for general control of the mouse and Hat 1 left and right as
fine control of the mouse's X direction. That's worth remembering … it all
depends on how you want your mouse to behave. Unfortunately there's no way to
tell the compiler to use MSX(0), MSY(0) as centre characters with a USE
MICROSTICK AS MOUSE statement. If you want that, then you need to use the
actual MIX and MIY statements or provide a Starting value, which will then set up
Type 5 statements that do use MSX(0), MSY(0) as centre characters. Let's see
what the Compiler does then with some more USE MICROSTICK AS MOUSE
Type 6 statements.

USE MICROSTICK AS MOUSE (3, 4)

is converted into:

MIX 6 5 (2 16 32 68 84 98) MSX(4+) MSX(4-) ^
MIY 6 5 (2 16 32 68 84 98) MSY(4-) MSY(4+) ^
BTN T1 /H MOUSE_LB

USE MICROSTICK AS MOUSE (4, 2)

is converted into:

MIX 6 7 (2 12 23 36 65 78 89 98) MSX(2+) MSX(2-) ^
MIY 6 7 (2 12 23 36 65 78 89 98) MSY(2-) MSY(2+) ^
BTN T1 /H MOUSE_LB

USE MICROSTICK AS MOUSE (12, 3)

is converted into:

MIX 6 23 (2 4 6 8 11 14 17 21 25 30 36 43 58 65 71 76 80 84 87 90 93 95 97 98) MSX(3+) MSX(3-) ̂
MIY 6 23 (2 4 6 8 11 14 17 21 25 30 36 43 58 65 71 76 80 84 87 90 93 95 97 98) MSY(3-) MSY(3+) ̂
BTN T1 /H MOUSE_LB

USE MICROSTICK AS MOUSE (4, 2) - REVERSE_UD

is converted into:

MIX 6 7 (2 12 23 36 65 78 89 98) MSX(2+) MSX(2-) ^
MIY 6 7 (2 12 23 36 65 78 89 98) MSY(2+) MSY(2-) ^
BTN T1 /H MOUSE_LB

Now, let's take a look at what happens when we provide a Starting value in the
USE MICROSTICK AS MOUSE statement. The Compiler converts these into
Digital Type 5 statements.

THRUSTMASTER®

HOTAS Cougar Reference Book 149

Type 5 Digital Statements

USE MICROSTICK AS MOUSE (2, 2, 3)

is converted into:

MIX 5 3 (0 24 75 100) MSX(-3) MSX(0) MSX(3)
MIY 5 3 (0 24 75 100) MSY(3) MSY(0) MSY(-3)
BTN T1 /H MOUSE_LB

Notice that the number of bands that are created is 3. The centre band is
used to ensure that the mouse is stationary, and the 2 bands either side of
it take up the Starting value, so effectively the Increment value is ignored in
this case. Now compare this statement with the next one below:

USE MICROSTICK AS MOUSE (3, 2, 3)

is converted into:

MIX 5 5 (0 14 31 69 86 100) MSX(-5) MSX(-3) MSX(0) MSX(3) MSX(5)
MIY 5 5 (0 14 31 69 86 100) MSY(5) MSY(3) MSY(0) MSY(-3) MSY(-5)
BTN T1 /H MOUSE_LB

Now you can see the relationship between the Starting value and the Increment
value. Or if you can't compare the statement below and you should have it by then.

USE MICROSTICK AS MOUSE (3, 8, 1)

is converted into:

MIX 5 5 (0 14 31 69 86 100) MSX(-9) MSX(-1) MSX(0) MSX(1) MSX(9)
MIY 5 5 (0 14 31 69 86 100) MSY(9) MSY(1) MSY(0) MSY(-1) MSY(-9)
BTN T1 /H MOUSE_LB

USE MICROSTICK AS MOUSE (12, 2, 3)

is converted into:

MIX 5 23 (0 2 4 6 9 12 16 20 25 30 36 43 59 66 72 77 82 86 90 93 96 98 99 100)
 MSX(-23) MSX(-21) … MSX(-3) MSX(0) MSX(3) … MSX(21) MSX(23)
MIY 5 23 (0 2 4 6 9 12 16 20 25 30 36 43 59 66 72 77 82 86 90 93 96 98 99 100)
 MSY(23) MSY(21) … MSY(3) MSY(0) MSY(-3) … MSY(-21) MSY(-23)
BTN T1 /H MOUSE_LB

THRUSTMASTER®

150 HOTAS Cougar Reference Book

USE MICROSTICK AS MOUSE (3, 8, 1) - REVERSE_UD, REVERSE_LR

is converted into:

MIX 5 5 (0 14 31 69 86 100) MSX(9) MSX(1) MSX(0) MSX(-1) MSX(-9)
MIY 5 5 (0 14 31 69 86 100) MSY(-9) MSY(-1) MSY(0) MSY(1) MSY(9)
BTN T1 /H MOUSE_LB

And for sake of completeness, the assignment to other axes:

USE JOYSTICK AS MOUSE (3, 2, 3)

JOYX 5 5 (0 14 31 69 86 100) MSX(-5) MSX(-3) MSX(0) MSX(3) MSX(5)
JOYY 5 5 (0 14 31 69 86 100) MSY(5) MSY(3) MSY(0) MSY(-3) MSY(-5)

USE JOYY AS MOUSEZ (4,2)

is converted into:

JOYY 6 7 (2 12 23 36 65 78 89 98) MSY(2-) MSY(2+) ^

Well I hope I've managed to explain that clearly! Let's move on.

7.5 USE ZERO_MOUSE

This configuration statement is useful when setting up your own mouse
statements on the microstick, in conjunction with /I and /O modifiers, to
prevent the mouse from getting stuck.

We've seen in the previous section how we can use digital statements to create a
custom mouse on the microstick. A USE ZERO_MOUSE configuration statement
can be used to ensure that you don't get a stuck mouse when combining mouse
statements with /I and /O modifiers. Consider this example:

MIX /I 1 6 MSX(2+) MSX(2-)
 /O 1 6 RARROW LARROW
MIY /I 1 6 MSY(2-) MSY(2+)
 /O 1 6 UARROW DARROW

In this example, if you hold button S3 in on your joystick, then the microstick will
move the mouse. If whilst the mouse is moving you release button S3, the mouse
will continue to move, and it will get stuck when it reaches one border of your
screen. Inserting a USE ZERO_MOUSE statement will prevent this from
happening, forcing the mouse to stop moving when button S3 is pressed/released.

THRUSTMASTER®

HOTAS Cougar Reference Book 151

It is worth pointing out here that this stuck mouse behaviour isn't a bug as such.
The control of the mouse by the microstick is behaving as it has been
programmed to behave. You can always prevent a stuck mouse by returning the
microstick to its central position before releasing S3 with the above example. The
golden rule here is this when it comes to stuck keys or stuck mouse movements:
you must use your controllers' buttons, hats and axes as they have been
designed to be used through their programming. This statement is of course a
great work around for those of us who never follow this rule :)

7.6 PROGRAMMING WITH MOUSE BUTTONS

You can assign the mouse buttons in buttons statements, axis statements … well
in all manner of statements. Here's the syntax then for them:

Mouse button syntax:

MOUSE_LB
MOUSE_RB
MOUSE_MB

(MB = middle button on a 3 button mouse)

Here's an example:

BTN T1 /I /H MOUSE_RB
 /O /H MOUSE_LB

With this statement, we're assigning the left mouse button to the microstick's T1
button when button S3 on the joystick isn't being pressed, and the right mouse
button to the microstick's T1 button when button S3 is being pressed.

You can also use KD and KU with the mouse buttons:

BTN S1 KD(MOUSE_LB) DLY(2000) KU (MOUSE_LB)

When button S1 is pressed, the left mouse button is pressed for 2 seconds, and
then released.

7.7 DISABLING THE DEFAULT ASSIGNMENT OF
 THE MOUSE TO THE MICROSTICK

THRUSTMASTER®

152 HOTAS Cougar Reference Book

In the Preferences Window in Foxy, there is a tab titled "Defaults." The purpose of
these settings is to instruct the compiler to setup the selected settings, if no
statements to the contrary exist in a file.

One of the settings is "Assign mouse to microstick." If this is selected, then when you
download a file to your controllers, the compiler sets up the mouse onto the
microstick, and the left mouse button onto T1. This is designed like this as most users
will want the microstick to control the mouse by default, but may not have got this far
into the reference book to understand what statements to use to do this!

If you wanted to be able to use the microstick axes assignable within a game, but
not have the mouse assigned to them by default, without having to deselect the
default option in Foxy, then you should use the configuration statement:

Configuration statement

DISABLE MOUSE

in your joystick file. This will prevent the compiler from assigning the default digital
statements to the microstick if you've setup Foxy's preferences to force the
compiler to do this.

You can still assign the mouse to a hat, buttons or other axes. Remember that
the mouse device is always present - it's just that you have to assign it to
something if you want to control the mouse.

7.8 ADVANCED MOUSE MOVEMENT STATEMENTS

We’ve already seen that it is possible to move the mouse through programming
statements. In the final part of this chapter, we're going to look at how to perform
more complex mouse movements.

7.8.1 Defining the screen resolution

With all of the statements that we will be explaining soon, it is essential to define
the screen resolution that you are using for your game, with the configuration
statement:

Configuration statement:

USE SCREEN_RESOLUTION (X,Y)

Example:

THRUSTMASTER®

HOTAS Cougar Reference Book 153

USE SCREEN_RESOLUTION (800,600)

The lowest values you can enter are 640, 480 for X and Y respectively.

Technical note: The 800 and 600 describe the screen resolution in pixels. A pixel
is the smallest point you can draw on a screen. So in this instance the screen
consists of 800 lines and 600 columns of points. Obviously at a screen resolution
of 1600 by 1200, your screen resolution is higher, meaning that images tend to
be less jagged.

Then we can use the following statements with the mouse:

Command syntax:

Moving to a specific screen position
MOUSEXY (Origin,X,Y)

Moving relative to the current mouse position
MOUSEMOVE (X,Y)

Rotational/Polygon movement
MOUSEROTATE (Origin, CentrePoint, Radius, Start angle, Macro1,

 Rotate direction, Final angle, Number of steps, Macro2)

7.8.2 Moving to a specific screen position

Command syntax:

MOUSEXY (Origin,X,Y)
MOUSEXY (Origin,X%,Y%)

where

• Origin is one of the corner positions on the screen UL, DL, UR, DR.
• X,Y is the X, Y coordinate on the screen where you want to move the mouse to.
• X%, Y% is a percentage movement from 0 to 100% (3 decimal place

accuracy) to move the mouse by. Using percentages allows you to change
screen resolution without needing to change statement values.

There is no way within a game to know where the mouse is at any one time, or be
able to track it. And therefore to be able to move to a specific position, we have to
first move the mouse to a corner position on the screen, as we know exactly what
the coordinates of this position is from the SCREEN_RESOLUTION statement,

THRUSTMASTER®

154 HOTAS Cougar Reference Book

and the compiler can then calculate where to move the mouse to from there. This
happens very quickly so it shouldn’t be a problem, but you should ensure a
mouse button isn't being pressed before doing this.

So the statement:

BTN H3D MOUSEXY (UL, 400, 300)

will first move the mouse very quickly to the top left corner of the screen, then
move it to point 400, 300, ie. the centre of the screen when it is at a resolution of
800 by 600. So let’s say that you need to press F2 to get a cockpit view, then
need to move the mouse to a button in your cockpit, press the button, and return
the view to the forward head up position pressing F1. This statement will do this:

BTN H3D F2 MOUSEXY (UL, 400, 300) MOUSE_LB F1

Now if we changed the statement to this:

BTN H3D F2 MOUSEXY (UL, 50%, 50%) MOUSE_LB F1

then if a user changed their resolution for their game to 1600 by 1200, and
changed their USE SCREEN_RESOLUTION statement to reflect this, then the
statement will work just as it did at 800 by 600.

NOTES

1. You must have a USE SCREEN_RESOLUTION () configuration statement

present to use this statement.

2. All mouse statements are subject to RATE value speed restrictions. If the

mouse movement is too slow then reduce the RATE statement value. Note that
by default if you don’t have a USE RATE (nnnn) statement in your file, it will be
set to zero - the fastest response anyway.

7.8.3 Moving the mouse relative to its current position

Command syntax:

MOUSEMOVE (X,Y)
MOUSEMOVE (X%,Y%)

where:

THRUSTMASTER®

HOTAS Cougar Reference Book 155

• X,Y is the number of pixels you want to move the mouse to relative to its
current position.

• X%, Y% is a percentage movement from 0 to 100% (3 decimal place accuracy)
to move the mouse by. Using percentages allows you to change screen
resolution without needing to change statement values.

Generally then you’ll know where the mouse is because you’ll use a MOUSEXY
statement to position it first.

Let’s look at some examples using the MOUSEMOVE statement:

BTN TG1 MOUSEMOVE (20, 50)

Pressing the trigger will move the mouse 20 pixels to the right along the
horizontal axis of the screen, and 50 pixels down the vertical axis of the screen.

BTN S1 MOUSEMOVE (20%, 50%)

Pressing button S1 will move the mouse 20% of the screen width to the right along
the horizontal axis of the screen, and 50% of the screen height down the vertical
axis of the screen. Now if you’re running at 800 by 600, this means that the mouse
will move 160 pixels to the right (20% of 800) and 300 pixels down (50% of 600).

BTN H2R MOUSEMOVE (30, 0)

Pressing Hat 2 right will move the mouse 30 pixels to the right only … i.e. along a
horizontal line. If you wanted to move the mouse left then you could place a ‘-‘
sign before the 30.

BTN H2U MOUSEMOVE (0%, -50%)

Pressing Hat 2 up will move the mouse up the screen along a vertical line by 50%
of the screen height - equivalent to 300 pixels at a screen resolution of 800 by 600.

NOTES

1. You must have a USE SCREEN_RESOLUTION () configuration statement

present to use this statement, or a compiler error will occur.

2. All mouse statements are subject to RATE value speed restrictions. If the

mouse movement is too slow then reduce the RATE statement value. Note
that by default if you don’t have a USE RATE (nnnn) statement in your file, it
will be set to zero - the fastest response anyway.

3. You cannot mix % and absolute values in these statements. So:

BTN H2U MOUSEMOVE (0%, -50%) is correct, whereas:

THRUSTMASTER®

156 HOTAS Cougar Reference Book

BTN H2U MOUSEMOVE (0, -50%)

will generate a compiler error.

4. With a MOUSEMOVE statement, the mouse moves along both axes at the

same time. So a statement such as:

BTN S1 MOUSEMOVE (100, 100)

will move the mouse diagonally down and to the right, and not 100 pixels along
the screen's X axis first, and then 100 pixels down the Y axis.

7.8.4 Rotational/Polygon movement

Command syntax:

MOUSEROTATE (Origin, CentrePoint, Radius, Start angle, [Macro],

 Rotate direction, Final angle, Number of steps)

Where:

• Origin is one of the corner positions on the screen UL, DL, UR, DR.

• CentrePoint is the centre of rotation as a coordinate: X,Y or as a %

• Radius is the radius of a circle for defining the rotation arc in pixels or
 percentage (but see the notes section)

• Start angle is from 0 to 360°

• Macro is a simple macro … typically a mouse button press (but see the
 restrictions in the Notes section.) Use a null character if you don’t want to
 insert a macro. The macro must be enclosed by [] brackets.

• Rotate direction is CW or CCW (Clockwise or CounterClockwise)

• Final angle is the amount of rotation you want as an angle between 0 to
 1800° (5 complete revolutions)

• Number of steps defines how smooth the rotation occurs. Values allowed are
 1 or 2. These produce movement in the following shapes:

Number of steps = 1: a square (err.. 4 sides!),
Number of steps = 2: an octagon (8 sides)

The larger the step value, the slower the movement, although it's not that dramatic.
All numerical values are accurate to one decimal place (eg. 244.3, 301.8)

THRUSTMASTER®

HOTAS Cougar Reference Book 157

This functionality was introduced to allow a user to be able, just by pressing a
button on their controllers, to rotate a knob in a flightsim’s cockpit.

Let us consider an example, whereby I want to rotate, using my mouse and its left
button, a communications dial on my cockpit whose centre is located on the
screen at 300, 400.

The statements I need for this are:

USE SCREEN_RESOLUTION (1024,768)
BTN S2 MOUSEROTATE (DL, 300, 400, 40, 30, [MOUSE_LB], CW, 90, 2)

So let's go through this in stages. When Button S2 is pressed:

1. DL - The mouse moves to the lower left position of the screen very quickly to

get its reference point. Remember the mouse can be anywhere on the
screen so we first need to move it to a corner or centre position to reference
its movement from there.

2. 300,400 - The mouse uses the centre of the communications dial on the
screen to calculate where it is to rotate around.

3. 40 - the radius of the rotation arc it is to move around.
4. 30 - the start angle from the vertical (0 degrees), combined with the previous

information determines where macro1 will be activated.
5. [MOUSE_LB] - the mouse left button is held down.
6. CW - the mouse is to be rotated clockwise around the dial
7. 90 - until it reaches 90 degrees from the vertical (0 degrees)
8. 2 - the movement will follow the path of an octagon. Use the smallest number

here to get the communications dial to rotate as you want it to.

CentrePoint
e.g. 300, 400

Start angle
e.g. 30

Final angle
eg. 90

Clockwise
(CW)
rotation

 0 degrees

Radius
eg.40 pixels

 Mouse_LB

THRUSTMASTER®

158 HOTAS Cougar Reference Book

9. The statement is over so the macro is terminated – i.e. the left mouse button
is released.

It's complex I know, but then describing the path of rotation of the mouse is
complex! :-)

NOTES ON THE MACRO

1. The macro will always be held - it's as though there's a /H (hold) slash modifier

in front of it. The code for the macro will automatically break once the mouse
movement is complete.

2. Here is the list of allowable key presses....

• Simple characters (a, b, 1, 2, `, etc.)
• SHF, ALT, CTL characters (A, ALT b, etc.)
• DirectX and POV key presses (DX1, POVL, etc.)
• MOUSE_LB / RB / MB key presses
• XFlag key presses (X1, X2, etc.)
• USB key presses

3. You cannot use slash modifiers, DLY() or RPT() in the Macro.

NOTES

1. You cannot group MOUSEROTATE statements with other key presses. So:

BTN S2 a b DLY(30) MOUSEROTATE (blah blah) PRNTSCRN

is fine but:

BTN S2 a b DLY(30) {MOUSEROTATE (blah blah) PRNTSCRN}

will generate a compiler error.

2. You must have a USE SCREEN_RESOLUTION () configuration statement

present to use this statement, or a compiler error will occur.

3. All mouse statements are subject to RATE value speed restrictions. If the

mouse movement is too slow then reduce the RATE statement value. Note
that by default if you don’t have a USE RATE (nnnn) statement in your file, it
will be set to zero - the fastest response anyway.

THRUSTMASTER®

HOTAS Cougar Reference Book 159

4. You can for the Macro use macro definitions instead of programming directly
into the statement. The most common macros will be MOUSE_LB or
MOUSE_RB (the left and right mouse buttons respectively.)

5. Chorded keys will not work in the MOUSEROTATE statement. Since

everything in the Macro for the mouse rotate is grouped anyway, you should
be using LSHF and not SHF.

6. The Radius can also be expressed in terms of pixels or as a % of the Screen

Resolution X axis. This may seem odd at first so let me explain. The radius is a
fixed length, normally in pixels. Let's say that we have a screen resolution of
800 by 600, and that we have a radius of 600 pixels (the centre of rotation lying
along the bottom of the X axis.) Unlikely, but it could happen. So the radius in
% terms is (600/800*100) = 75%. If you now want to use a different
resolution, say 1024 by 768, the radius will be 75% of 1024, ie. 768 pixels long.
As it's possible to have a radius longer than the screen Y resolution, then it
makes sense to express it when using percentages as a percentage of the X
axis. There's an important point to make here though. The ratio of the X to the
Y axis is critical here. Now for resolutions of 800 by 600, 1024 by 768, 1152 by
864, 1600 by 1200 etc. that ratio is constant and equals 1.333. But if you use a
resolution such as 1280 by 1024 (ratio = 1.25) then because the ratio is
different, the radius will not scale up exactly. So just be aware of this if you're
setting up MOUSEROTATE statements using % values rather than pixel
values.

7. This is a complex statement, and so the chances of creating a compiler error if
you forget one of the parts, or a misplaced comma, are pretty high! I implore
you then to use the Advanced Mouse Programming Wizard in Foxy to create
these statements. For one thing it was a real tricky bit of coding and I'd
appreciate it if I knew that it hasn't been in vain!

THRUSTMASTER®

160 HOTAS Cougar Reference Book

8. Logical Programming

8.1 LOGICAL PROGRAMMING - THE BASICS

8.1.1 Understanding flags

Logical programming is all based around the concept of flags. So what's a flag?
Let's start off with some facts about flags that should totally confuse you, and then
we'll make it suddenly very clear with a simple example. Here are the facts then:

• A flag can be on or off.
• There are 32 flags, and they're called X1 to X32.
• A flag doesn't do anything. It's just either on or off.

Confused? (I sure as hell was when I first started reading up about them!) So let's
use your keyboard's Caps Lock button to explain the concept of flags.

Let's say that your Caps Lock button is called X1. When you press the Caps Lock
button, the Caps Lock light on your keyboard switches on, so X1 is on. The
keyboard knowing that X1 is on sends out a "W" character instead of a "w"
character when you press the "w" key. If I turn off the Caps Lock button by
pressing it, the Caps Lock light goes off, so X1 is now off, and now a "w"
character is sent to the computer. So we could say that the Caps Lock button
doesn't actually do anything - it just switches X1 on or off, but it is the fact that X1
is on or off that affects what character the keyboard sends to the computer.

And this is the important concept to understand. A flag doesn't do anything. It's
just that it gets turned on or off. You can't see that it is on or off. But you can use
the fact that it is on or off to change the way your stick behaves. So what we do in
logical programming is to program what happens depending on whether the flag
is turned on or off.

8.2 DEFINING LOGICAL FLAGS AND THEIR
 BUTTON STATEMENTS

Let's start off then by understanding how to turn on or off a flag. Here's the syntax:

Configuration statement:

DEF X1 S2

THRUSTMASTER®

HOTAS Cougar Reference Book 161

Logical programming statement:

BTN X1 /H Fire_rockets

In the above example, we've DEFined a flag called X1 using the DEF statement, and
we've stated that it is controlled by button S2. So when button S2 on the joystick is
pressed, flag X1 is on, and when button S2 is released, then flag X1 is off.

Once you have a logical flag defined, you can program it with a button (BTN)
statement. And in the above example, when button S2 is pressed, your rockets
will continually fire. They fire, because you've told them to fire when flag X1 is on,
and X1 stays on while button S2 is pressed. It’s important to note that logical
button statements are subject to the same rules as ordinary button statements
with the exception that you can’t use /T toggle slash modifiers with them. So they
will behave as non-repeating statements, even if the flag is on, unless you use
something like a /H hold modifier to hold the logical button down.

Ok, you're probably scratching your head at this stage and asking the question:
"Well why didn't you just have:

BTN S2 /H Fire_rockets

in your joystick file? Why the need for logical flags?" Well obviously in this
example, you're absolutely right, there's no need for logical flags and both
statements are equivalent. But we'll come onto an example that you can't achieve
with ordinary programming soon - I'm just introducing the syntax for the moment.

It is also possible to define logical flags directly onto digital Type statements and
directly with button statements:

RNG 2 5 X1 X2 X3 X4 X5
BTN H1L X8

are perfectly valid statements.

Now there’s a slight difference between defining a logical flag using a
configuration statement, as opposed to defining it directly onto a button. When
you use something like this:

DEF X20 S1

then the flag X20 is on and stays on whilst button S1 is pressed. Now if we have:

BTN S1 X20

THRUSTMASTER®

162 HOTAS Cougar Reference Book

in our joystick file (without a DEF statement) then it is going to behave as a
normal button statement, ie. X20 will turn on and then off even if you keep button
S1 pressed. So

BTN S1 /H X20

will behave the same way as a DEF X20 S1 statement. Note that you cannot
have a DEF statement that defines a logical flag, and then have that logical flag
on a button or axis statement.

We’ve said that placing and hence defining a logical flag directly on a button
statement is subject to the same programmability as a normal button statement.
Therefore you can generate flags using a statement like:

BTN S1 KD(X8) DLY(2000) KD(X6) KU(X6 X8)

This might not seem like a particular advantage, but if you would like a setup
stage, followed by an auto-repeating stage, you could set it up like this:

BTN X1 /A Fire_Main_Guns
BTN S1 /H Switch_to_Main_Guns X1

Now the /H is used, and this will apply to the X1 part of the statement. So the
effect of this is that the Switch_to_Main_Guns is done only once, but the
Fire_Main_Guns is auto-repeated by the logical flag. Cool, eh?

NOTES

Be careful about defining the same logical flag both with a DEF statement, and
directly on a button statement. For example:

DEF S4 X1
BTN S2 X1

This is effectively the same as saying:

DEF X1 S4 OR S2

so if either S4 or S2 are being pressed, X1 will be on.

8.3 LOGICAL COMPARATORS

The Logical Comparators consist of the following: AND, NOT and OR which can
also be used in conjunction with parentheses.

THRUSTMASTER®

HOTAS Cougar Reference Book 163

Configuration statements:

DEF X1 S2 OR T6
DEF X2 S4 AND S3 AND H1U
DEF X3 S1 AND NOT X1

Logical programming statements:

BTN X1 Fire_missile
BTN X2 Engines_off Gather_belongings Eject
BTN X3 AutoPilot

Let's look at the first pair:

DEF X1 S2 OR T6
BTN X1 Fire_missile

Flag X1 can be turned on by either button S2 or button T6. And so pressing
button S2 or T6 results in a single missile being fired. Ok we could have gotten
the same result with:

BTN S2 Fire_missile
BTN T6 Fire_missile

So let's look at a situation that can't be programmed directly onto buttons:

DEF X2 S4 AND S3 AND H1U
BTN X2 Engines_off Gather_belongings Eject

In this example, flag X2 only turns on when button S4 and button S3 are pressed as
well as Hat 1 being pushed up. Not something you'll do by accident! But when you
do, you'll be landing by the seat of your pants, literally. And in the final example:

DEF X1 S2 OR T6
DEF X3 S1 AND NOT X1
BTN X3 AutoPilot

we have defined X3 as being turned on by S1, but not if button S2 or T6 are
pressed. So button S1 will turn on the autopilot, unless S2 or T6 is pressed.

Note that logical flags follow the same non-repeating behaviour as button
statements when programmed directly onto buttons statements.
On a final note before we leave the logical comparators, it is possible to use
brackets to group logical statements together. DEF statements can be composed
of any combination of AND, OR, and NOT statements, left and right parentheses,

THRUSTMASTER®

164 HOTAS Cougar Reference Book

and button or flag references, so long they result in a valid logical equation, for
example:

DEF X1 (S1 AND NOT S2) OR (X5 AND (H1U OR H2U))

is perfectly valid.

8.4 THE LOGICAL TOGGLE

In the examples that we've used so far we've set up logical flags so that they
were on when a button, or combination of buttons was pressed, and then the
flags turned off when those buttons were released. It's also possible to force a
logical flag to behave a little more like a light switch - ie. to stay on when turned
on even when the button is released, and to be turned off again when the button
is pressed again. In other words, we are toggling between an on and off state for
the flag. We do this with a "*" placed after the flag or button.

Configuration statement:

DEF X1 S4*

Logical programming statements:

BTN X1 /A Chaff DLY(30) Flare DLY(30)

When button S4 is pressed, flag X1 is turned on. It stays on even when S4 is
released, because of the toggle * after it. Only when button S4 is pressed again,
will the flag now toggle off. The effect in the example above is that when S4 is
pressed and released, you'll start throwing out chaff and flares from your aircraft
whilst you try and get out of the way of that SAM and sidewinder (unlucky day I
guess!) and pressing S4 again will stop the continuous chaff and flare dispensing.
(That's if you haven't run out by then of course!)

NOTES

1. You cannot reference a logical toggle directly on a button. For example:

BTN T6 X1*

This will generate a compiler error. (This behaviour is different to the original
TM F-22 PRO logical syntax). Logical toggles are only allowed in DEF
statements. So this would be fine:

DEF X1 T6*

THRUSTMASTER®

HOTAS Cougar Reference Book 165

2. Note that unlike button statements, the /T slash modifier is not permitted with

logical button programming statements. So:

BTN X7 /T a /T b

will result in a compiler error. But this is allowed:

BTN S4 /T X1 /T X2 /T X3

8.5 USING THE LOGICAL DELAY AND PULSE FUNCTIONS

8.5.1 The Delay Function

The DELAY function adds a fixed time between the time that the logical equation
produces a true state and the time that the flag actually turns ON. Syntax is:

Configuration statement:

DEF Xflag DELAY(Flag_on_delay) Logical equation

Consider this example:

DEF X1 DELAY(1000) S1 AND S4
BTN X1 Eject

This statement defines X1 to turn on 1 second (1000 milliseconds) after S1 and
S4 are pressed simultaneously. If either S1 or S2 is released, the delay will be
stopped. If X1 has not turned ON yet, it will remain OFF, if it has turned ON, then
it will turn OFF immediately. The delay will also be reset, so if S1 and S4 are
subsequently pressed again. The entire 1 second delay will start over.

And in this example, it's being put to good use in an Ejection sequence.

NOTES

1. The logical DELAY function is totally different to the DLY() function. The

allowable values in the logical DELAY statement are 0 to 327670 (i.e. 5.46
minutes - don't even think about asking why!).

2. DELAY statements must appear first in a logical statement. So:

DEF X1 DELAY(1000) S1 AND S4 is OK, but:

THRUSTMASTER®

166 HOTAS Cougar Reference Book

DEF X1 X2 AND DELAY(1000) S1 AND S4 will generate an error.

8.5.2 The Pulse Function

The PULSE function sends a repeated ON-OFF sequence while the logical
equation is true. The two numbers in the function define the ON and OFF periods
respectively. Here's the syntax:

Configuration statement:

DEF Xflag PULSE(Time_on Time_off) Logical equation

So for example:

DEF X1 PULSE(100 1000) H1U
BTN X1 Trim_up_increase

Pressing HAT 1 up will cause X1 to turn ON immediately for a time period of
1/10th of a second, then OFF for a time period of 1 second, then ON for 1/10th
second, etc. That operation would run continuously so long as HAT 1 up was
pressed. And in this example we'd increase the trim by 1 stage every
1.1 seconds. Notice that it's 1.1 seconds. If I wanted to increase the trim every
second, then the statement would need to be changed to:

DEF X1 PULSE(100 900) H1U

Note that a SPACE character must separate the two numeric values. Using a
comma or other separator will cause a compiler error.

NOTES

1. PULSE statements must appear first in a logical statement. So:

DEF X1 PULSE(100 1000) S1 AND TG1 is OK, but
DEF X1 X2 AND PULSE(100 1000) S1 will generate an error.

2. The actual resolution for any DELAY, RATE, PULSE time is around 30

milliseconds, and the minimum effective values is also 30 milliseconds, so any
value between 1 and 30 produces about a 30 millisecond delay, 31 through 60
produces a 60 millisecond delay, 61 through 90 produces a 90 millisecond
delay etc.

3. The allowable values in the logical PULSE statement are 0 to 82800000 (i.e. 23 hours).

THRUSTMASTER®

HOTAS Cougar Reference Book 167

8.6 LOGICAL PROGRAMMING EXAMPLES

8.6.1 Toggling a Type 4 statement on and off

Using a Type 4 Digital statement, we can produce repeating, or pulsed characters
on the RNG knob like this:

RNG 4 1000 a ^ b

Now the only way to turn off the pulsed characters is to move the RNG knob into its
centre position, where the null character ()̂ is. But let's say that instead, what we'd like to
do, is to be able to depress the RNG knob, ie. button T6, to stop and start the pulsed
characters. With logical programming, this is easy and achieved with these statements:

DEF X3 T6*
DEF X4 X1 AND NOT X3
DEF X5 X2 AND NOT X3
RNG 4 1000 X1 ^ X2
BTN X4 a
BTN X5 b

The way this works is like this. The Range knob, instead of directly producing
pulsed characters, now turns on and off the logical flags X1 and X2. Button X4
and 5 generate the a and b characters, but only if the logical flag X3 isn't on, and
as buttons T6 toggles X3 on and off, we now have a way of turning on and off the
characters generated on the range knob.

8.6.2 A slow trim function

I'd better give credit where credit is due, so this one's courtesy of Mark! We're
going to consider that in a flight sim, we use KP7 and KP1 to trim the aircraft's
attitude up and down. What we're going to set up, on a hat, is a slow trim function,
so that if we press Hat1 Up and release it, then every 5 seconds, a KP7 is
generated adjusting the trim, and when we press the hat up again, we stop
adding trim. And similarly for Hat1 Down with KP1. And here's how:

DEF X1 H1U* AND (NOT X2)
DEF X2 H1D* AND (NOT X1)
BTN X1 /A KP7 DLY(5000)
BTN X2 /A KP1 DLY(5000)

THRUSTMASTER®

168 HOTAS Cougar Reference Book

Let me explain what's going on here. When Hat 1 is pressed up, it turns on X1
which stays on because we've toggled it with the toggle (*) flag. If X1 is on then
we execute the button X1 statement, and we get our KP7 repeating every 5
seconds. When Hat 1 is pressed again, it turns off X1 because its toggled, and
we stop generating KP7. It's exactly the same for X2. The inclusion of (NOT X1)
ensures that if Hat 1 is pressed down and is generating KP1, and then you press
Hat 1 up, then you don't generate KP1 and KP7 at the same time.

There are some files written by Mark Mooney in your Files folder with some more
examples of Logical programming.

9. Troubleshooting

9.1 RESETTING THE CONTROLLERS

There are several ways of dealing with problems with the controllers, described
hereafter.

9.1.1 In a game: EMPTY_BUFFERS and STICK_OFF

It is (with great difficulty!) possible that you may produce too many characters
from the Cougar, either by pressing too many buttons too quickly (unlikely), or by
using a file that is poorly programmed (now this is possible), causing the joystick
to operate erratically. The way that this will manifest itself is that it will appear that
the controllers have stalled - the analogue axes will continue to function, but no
buttons will appear to work. In this situation, it is possible to clear the buffer
memory, without clearing the program within the controllers, so that you can
continue to play the game.

Command syntax:

EMPTY_BUFFERS

Example:

BTN S2 EMPTY_BUFFERS

Obviously this is something that will very rarely be used, and so it would make
sense to use this with some logical programming requiring a specific combination
of keys to be pressed for some time, before processing it, so that it couldn’t be
processed accidentally.

THRUSTMASTER®

HOTAS Cougar Reference Book 169

DEF X1 DELAY(2000) S1 AND S4
BTN X1 EMPTY_BUFFERS

In the above example, you'd have to hold down S1 and S4 together, for 2
seconds, before the logical flag X1 is turned on, which would then send a single
EMPTY_BUFFERS command to the controllers.

In a similar way you can actually turn off the controllers from within a game, effectively
putting the buttons mode into Windows mode, using the STICK_OFF statement.

Command syntax:

STICK_OFF

Example:

BTN S2 STICK_OFF

Obviously this is something that will very rarely be used, and so it would make
sense to use this with some logical programming requiring a specific combination
of keys to be pressed for some time, before processing it, so that it couldn’t be
processed accidentally.

DEF X1 DELAY(2000) S1 AND S4
BTN X1 STICK_OFF

Once you use this command, there's no way to turn the sticks back on again, so
it's only to be used in an emergency in your file if for some reason your controllers
are generating characters and you can't stop it. You will then need to exit your
game, and sort out whatever was causing the problem from within Windows.

9.1.2 Within Windows

If you look at Foxy's Cougar menu, you will see menu items allowing you to reset
different aspects of the controllers. Here in order of severity then are the steps
you should go through as you try to recover your state of mind!

1. Empty buffers

In exactly the same way as before, you can empty the buffer memory, retaining
the program within the memory as well as maintaining the controllers in their
present mode.

THRUSTMASTER®

170 HOTAS Cougar Reference Book

2. Disabling programmed mode

It is very easy from within Foxy to place the controllers into Windows mode, so
that they stop generating characters, if for any reason they're spewing out a load
of characters. If you're unlucky and that the characters are "F1" function keys,
then enjoy the selection of help windows that pop up whilst you reach for the USB
plug to unplug the controllers!

3. Clear memory

Windows mode is entered and the memory is cleared of any program.

4. Flash memory

In the case where there is a serious problem with the controllers, so that they are
recognised by Windows, but none of the axes or buttons work, or if a new version
of the firmware is released, then you can always re-flash or flash upgrade the
firmware memory.

5. Call technical support!

If the controllers aren’t recognised at all, then either the native Windows drivers
aren’t installed/functioning correctly, or there is a serious hardware problem. You
will then need to contact technical support and determine if the controllers need to
be returned.

THRUSTMASTER®

HOTAS Cougar Reference Book 171

10. Appendices

APPENDIX 1.
SUMMARY OF THRUSTMASTER STATEMENTS

Button statements and statement modifiers

Statement Acronym Description

BTN Button
Defines the button to be
programmed. These are Hat 1 to 4,
S1 to S4, T1 to T10, TG1 and 2.

REM Remark

Any text after a REM statement
on a line is ignored by the
compiler. Used for comments,
titles etc.

RESET_TOGGLES Toggle reset Resets a toggle series to the first /T

REVERSE_TOGGLES Reverse toggles Produces toggling in the reverse
direction

DLY Delay Adds a delay between characters
or macros.

RPT Repeat Repeats a character or macro

() Parenthesis grouping
Groups characters/macros
together for various statements
including digital statement grouping

{ } Curly Brackets grouping

Groups characters together
forcing all their make codes to be
generated before their break
codes. Similar to holding down a
group of keys.

< > Angle brackets

Forces the statements within
them to execute to completion
before any other statements are
executed

DX DirectX buttons
DirectX buttons that can be
programmed via any button
statement

KD
KU

KeyDown
KeyUp

Allows for greater control of a
key press down and up events.

USB USB keyboard scan codes Used to generate any make and
break character codes for any key.

REVERSE_UD
REVERSE_LR
REVERSE_DIR

Reverse controller
direction

Reverses the appropriate
controller's direction e.g. in
special HAT statements

THRUSTMASTER®

172 HOTAS Cougar Reference Book

Statement Acronym Description

NOHOLD, KP5 Affects USE HAT AS
statements

NOHOLD stops the Hat
statement producing held
characters. KP5 adds the KP5
centre position to USE HAT AS
KEYPAD statement.

FORCED_CORNERS Hat corners
Forces hat corner positions to be
generated from standard 4 hat
positions

S3_LOCK, S3_UNLOCK Lock S3, Unlock S3 Latches S3
Un-latches S3

SHIFTBTN S3 assign Assigns a different button for S3
POVn,
(n = D, L,R,UL, DL,UR, DR) Point Of View hat positions Allows programmatical control of

POV hat positions
MOUSE_LB, MOUSE_RB,
MOUSE_MB Mouse buttons Allows programmatic control of

mouse buttons

Slash modifiers and Statement modifiers

Slash
modifier Acronym Description

/U, /M, /D Up, Middle Down
Trebles the programmable positions for any
hat/button (apart from T7 and T8) by using the
throttle's dogfight switch position.

/I, /O In, Out
Doubles the programmable positions for any
hat/button when button S3 on the joystick is
pressed (can't use on S3 itself)

/P, /R Press, Release
Separates out for any position programmability
for when the controller is pressed, and then
when it is released.

/T Toggle Toggles forwards through different
characters/macros per button press

/H Hold

Produces held down characters for the duration
of the button pressed, irrespective of whether
other buttons are pressed. Can be used with
other slash modifiers.

/A Auto-Repeat Repeats everything on that line.

THRUSTMASTER®

HOTAS Cougar Reference Book 173

Configuration statements

Syntax Description

USE MDEF Identifies which macro file contains the macro
definitions for the current joystick file.

USE Btn AS DXn Assigns DirectX buttons. Replaces PORTB1 IS syntax

USE ALL_DIRECTX_BUTTONS Assigns Hat1 as POV and all other buttons as
DirectX buttons

USE HATn FORCED_CORNERS
Converts an 8 way hat to a 4 way hat, so that the
corner positions execute the statements on the
adjacent hat positions

USE HAT AS MOUSE, POV,
ARROWKEYS, KEYPAD

Define how to use a HAT if not for ordinary BTN
statement programming

USE RATE Default rate at which characters are generated /
repeated

USE S3_LOCK
USE S3_UNLOCK Changes S3 to act more like a latched switch

USE S3 AS SHIFTBTN Define a different button to use for S3 /I, /O

USE HATx_SENSITIVITY Reduces sensitivity to help in location of corner
positions

USE T1_SENSITIVITY Set the sensitivity of T1

USE FOXY
Used internally by Foxy for various functions, e.g.
USE FOXY GRAPHIC
USE FOXY README

USE NULLCHR Defines which character to use as the null
character - default is ^

USE KEYBOARD AZERTY - for Azerty keyboard layout and French
game key re-mapping problems

USE PROFILE Uses profiles saved from the TM Cougar Control Panel
USE CURVE Define an axis response curve
DISABLE AXIS Disable an axis
USE SWAP Swap axes around
USE REVERSE Reverses an axis
USE AXES_CONFIG Defines which axes to use, and other attributes of them

USE MTYPE Assigns mouse control to the microstick, and
defines which buttons to use for the mouse buttons

USE MICROSTICK AS MOUSE -
NO_BUTTON

Assign the mouse to the microstick, and the left mouse
button to T1 (unless - NO_BUTTON is present)

USE Axis_Identifier AS Mouse_Axis Assigns an axis to control the mouse
USE ZERO_MOUSE Prevents stuck custom mouse with /I, /O
DISABLE MOUSE Disable the mouse from being assigned by default
USE SCREEN_RESOLUTION Used in complex mouse movements

THRUSTMASTER®

174 HOTAS Cougar Reference Book

Axes programming

Axis statement Acronym Description

JOYX, JOYY Joystick X and Y Joystick axes
THR Throttle Throttle axis
RDDR Rudder Rudder axis
ANT Antenna knob Antenna knob axis
RNG Range knob Range knob axis
MIX, MIY Microstick X and Y Microstick axes
LBRK and RBRK Left and Right Toe Brakes Rudder Toe brake axes
MSX, MSY, MSZ Mouse X, Y, Z Mouse axes - Z is the mouse wheel

Digital Type statements
1 to 6

Produces keyboard characters from
the axes. Also used with mouse,
curve and logical flag statements.

FORCE_MACROS Force macros
Forces the characters/macros in
Type 1, 2, 5, 6 statements to
always be generated

CURVE Axis curve Axis curves - changes axis
response and sensitivity

TRIM TO_CURRENT
HOLDTRIM Axis trim Trims an axis to a specified value

LOCK,
UNLOCK,
LASTVALUE

Axis lock Hold an axis value so that it can
be used digitally only

SWAP Swap axes Swap axes around
REVERSE
FORWARD Axis direction Reverse an axis, restore normal

direction

Advanced mouse statements

Mouse statement Description

MOUSEXY Positions the mouse cursor at a particular screen coordinate
MOUSEMOVE Moves the mouse, relative to its current position

MOUSEROTATE Programs the mouse to move in rotational movements,
allowing cockpit rotaries to be controlled programmatically

THRUSTMASTER®

HOTAS Cougar Reference Book 175

Logical statements

Logical syntax Acronym Description

DEF Define Defines logical flags through equations

BTN Button Used to assign virtual button statements to the
logical buttons X1 to X32

X1 to X32 Logical flags Logical flags that are either on or off.
AND, OR, NOT Logical comparators Used to construct logical equations
* Toggle Toggles a logical flag between its on and off states

DELAY Delay Executes a delay after which a logical condition is
true

PULSE Pulse Produces characters/flag states every nn
milliseconds

Hardware statements

Syntax Description

EMPTY_BUFFERS Empties the buffer memory of the controllers

STICK_OFF Turns the controllers off in a game

THRUSTMASTER®

176 HOTAS Cougar Reference Book

APPENDIX 2. THRUSTMASTER DEFAULT KEY SYNTAX

ES

C F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

` 1 2 3 4 5 6 7 8 9 0 - = BSP
TAB q w e r t y u i o p [] \
CAPS a s d f g h j k l ; ’ ENT
LSHF z x c v b n m , . / RSHF
LCTL LALT SPC RALT RCTL

PRNTSCRN SCRLCK BRK

INS HOME PGUP

NUML KP/ KP* KP-
DEL END PGDN KP7 KP8 KP9

KP+
 KP4 KP5 KP6

 UARROW KP1 KP2 KP3
KPENT

LARROW DARROW RARROW KP0 KP.

NOTES

1. The Syntax for chorded keys (where you hold down the Shift, ALT or CTRL

keys) is SHF a, ALT b, CTL c. It is not LSHF a, LALT b LCTL c

2. Some keys are reserved: () { } < > and need to be programmed with

SHF statements:

(= SHF 9
) = SHF 0
{ = SHF [
} = SHF]
< = SHF ,
> = SHF .

THRUSTMASTER®

HOTAS Cougar Reference Book 177

APPENDIX 3. USB KEYDOWN AND KEYUP CODES

Example:

BTN S2 /P USB (D04) Rem “a” keydown
 /R USB (U04) Rem “a” keyup

Key Name USB HID code
a A 04
b B 05
c C 06
d D 07
e E 08
f F 09
g G 0A
h H 0B
i I 0C
j J 0D
k K 0E
l L 0F

m M 10
n N 11
o O 12
p P 13
q Q 14
r R 15
s S 16
t T 17
u U 18
v V 19
w W 1A
x X 1B
y Y 1C
z Z 1D
1 ! 1E

2 @ 1F
3 # 20
4 $ 21
5 % 22
6 ^ 23
7 & 24
8 * 25
9 (26
0) 27

Return 28

THRUSTMASTER®

178 HOTAS Cougar Reference Book

Escape 29
Backspace 2A

Tab 2B
Space 2C

- _ 2D
= + 2E
[{ 2F
] } 30
\ | 31

Europe 1 (See notes) 32
; : 33
' " 34
` ~ 35
, < 36
. > 37
/ ? 38

Caps Lock 39
F1 3A
F2 3B
F3 3C
F4 3D
F5 3E
F6 3F
F7 40
F8 41
F9 42
F10 43
F11 44
F12 45

Print Screen 46
Scroll Lock 47

Break (Ctrl-Pause) 48
Pause 48
Insert 49
Home 4A

Page Up 4B
Delete 4C
End 4D

Page Down 4E
Right Arrow 4F
Left Arrow 50

Down Arrow 51
Up Arrow 52
Num Lock 53
Keypad / 54
Keypad * 55
Keypad - 56

THRUSTMASTER®

HOTAS Cougar Reference Book 179

Keypad + 57
Keypad Enter 58
Keypad 1 End 59

Keypad 2 Down 5A
Keypad 3 PageDn 5B

Keypad 4 Left 5C
Keypad 5 5D

Keypad 6 Right 5E
Keypad 7 Home 5F

Keypad 8 Up 60
Keypad 9 PageUp 61

Keypad 0 Insert 62
Keypad . Delete 63

Europe 2 (See notes) 64
Keypad = 67

F13 68
F14 69
F15 6A
F16 6B
F17 6C
F18 6D
F19 6E
F20 6F
F21 70
F22 71
F23 72
F24 73

Keyboard Execute 74
Keyboard Help 75
Keyboard Menu 76
Keyboard Select 77
Keyboard Stop 78
Keyboard Again 79
Keyboard Undo 7A
Keyboard Cut 7B

Keyboard Copy 7C
Keyboard Paste 7D
Keyboard Find 7E
Keyboard Mute 7F

Keyboard Volume Up 80
Keyboard Volume Dn 81

Keyboard Locking Caps Lock 82
Keyboard Locking Num Lock 83
Keyboard Locking Scroll Lock 84

Keypad ,
(Brazilian Keypad .) 85

Keyboard Equal Sign 86

THRUSTMASTER®

180 HOTAS Cougar Reference Book

Keyboard Int'l 1
(Ro) 87

Keyboard Intl'2
 (Katakana/Hiragana) 88

Keyboard Int'l 2
¥ (Yen) 89

Keyboard Int'l 4
 (Henkan) 8A

Keyboard Int'l 5
 (Muhenkan) 8B

Keyboard Int'l 6
(PC9800 Keypad ,) 8C

Keyboard Int'l 7 8D
Keyboard Int'l 8 8E
Keyboard Int'l 9 8F

Keyboard Lang 1
 (Hanguel/English) 90

Keyboard Lang 2
 (Hanja) 91

Keyboard Lang 3
(Katakana) 92

Keyboard Lang 4
(Hiragana) 93

Keyboard Lang 5
(Zenkaku/Hankaku) 94

Keyboard Lang 6 95
Keyboard Lang 7 96
Keyboard Lang 8 97
Keyboard Lang 9 98

Keyboard Alternate Erase 99
Keyboard SysReq/Attention 9A

Keyboard Cancel 9B
Keyboard Clear 9C
Keyboard Prior 9D

Keyboard Return 9E
Keyboard Separator 9F

Keyboard Out A0
Keyboard Oper A1

Keyboard Clear/Again A2
Keyboard CrSel/Props A3

Keyboard ExSel A4
Left Control E0

Left Shift E1
Left Alt E2

Left GUI E3
Right Control E4

Right Shift E5
Right Alt E6

Right GUI E7

THRUSTMASTER®

HOTAS Cougar Reference Book 181

NOTES

These keys have various legends depending upon the locale for which the
keyboard is manufactured. Europe 1 is typically in AT-101 Key Position 42 next
to the Enter key. Europe 2 is typically in AT-101 Key Position 45, between the
Left Shift and Z keys.

APPENDIX 4. DIFFERENCES BETWEEN ORIGINAL TM FILES AND COUGAR FILES

There are some subtle (and some not so subtle) differences between original TM
files supporting the Digital chips, F22, FLCS, FCS, TQS, WCS MkII. This
appendix summarises those differences – see the Thrustmaster documentation
for more detailed explanations.

1. Changes in key syntax

Old syntax New syntax
LSFT LSHF
RSFT RSHF
none PRNTSCRN
AUXUAROW, UAROW UARROW
AUXDAROW, DAROW DARROW
AUXLAROW, LAROW LARROW
AUXRAROW, RAROW RARROW
AUXENT KPENT
AUX/ KP/
AUXINS INS
AUXHOME HOME
AUXPGUP PGUP
AUXPGDN PGDN
AUXDEL DEL
AUXEND END

THRUSTMASTER®

182 HOTAS Cougar Reference Book

2. Slash modifier changes

Slash modifier Comments
/U As before

 /M
/D
/I As before but /I statements must always appear before

/O statements, and /I, /O must be on different lines /O
/P As before /R
/T As before
/A Now defines auto-repeating statements

/H As before but characters are generated repeatedly, and in a complex
statement, applies to the last statement character

/F No longer supported
/Q No longer supported

/N No longer supported – all statements behave as though they are
non repeating unless /H, /A modifiers present

3. Statements no longer supported

Statement Comments
RAW () Replaced by USB () (HID codes) but easier to use KD() and

KU() statements
BTN MT Use Type 5 statements instead – they’re more powerful
BTN T11 – T14
(they no longer exist)

The microstick is like a 2 axis joystick – it isn’t a 4 button controller.
So can be programmed digitally with Type 1 to 6 digital statements

USE RCS No longer needed
USE TQS No longer needed
USE WCS No longer needed
USE RCSPRO No longer needed
USE NOMOUSE No longer needed
USE NOTHR No longer needed

USE MTYPE (B or C) Mouse types no longer supported, although 3 button mice
statements can be generated.

4. File extensions, file names

The joystick file must end in “.tmj” and the macro file in “.tmm”. Also, joystick file
names as well as macro file names can contain spaces and are not restricted to 8
character name lengths. But as before the joystick file must be in the same
folder/directory as the macro file. By default this is Foxy's Files folder.

THRUSTMASTER®

HOTAS Cougar Reference Book 183

5. Default actions

The compiler will setup some default actions for you with your files, dependant on
how you’ve setup your preferences in Foxy. These options are overridden either if
deselected in Foxy, or if you’ve programmed your files to behave differently.
They are:

• Hat 1 or a Hat of your choice as a Point Of View (POV) Hat
• TG1 as DX1, S2 as DX2 – i.e. as DirectX buttons, so these buttons will

have their functions assigned within a game if the game supports it.
• If no USE MDEF line is present, and the joystick file contains macros,

then the compiler will look for its macros from a file having the same
name as the joystick file, but with the extension “.tmm”

• The Microstick will control mouse movement, with T1 on the microstick
operating as a left hand mouse button.

The reasons for these defaults are to make it easier for beginners to get into
programming. So if a user has a joystick file that just has say:

BTN S1 Autopilot

and a macro file with just:

Autopilot = a

then they will be able to download the joystick file straight away and still find that
their trigger works, that the mouse works, etc.

The only danger here is that if the files are passed onto someone else, who has
changed their default settings in Foxy, say to produce an error if no
USE MDEF line is found, then the file won’t work for that user.

6. Digital vs. Analogue axes

With the original TM files, an axis could be programmed either digitally, thus
producing keyboard characters, or left as the default analogue mode, whereby its
function was assigned by the game (eg. Throttle axis = thrust in a flight simulator).
With the HOTAS Cougar, axes can be both analogue and digital at the same time
if required. To have a pure digital axis, its analogue function must be disabled
with the DISABLE statement. Also note that with the Cougar, you do not need to
change anything in the Control Panel’s Gaming Options applet, if you want to use
an axis as purely digital, which you had to do with the original TM controllers.

THRUSTMASTER®

184 HOTAS Cougar Reference Book

7. Type 1 digital statements

The syntax for these has changed – see the section in this reference book
detailing this.

8. Throttle not present

If you have a file written for a joystick and throttle, and the throttle isn’t present,
then with /U, /M, /D statements, only the /M statement will be compiled – the
/U, /D will be ignored. Throttle axes statements will also be ignored.

9. Macros - disallowed characters

You cannot use the following characters in macro names:

= < > { } () ^ , spaces

10. RPT

If you have a macro like this: Macro1 = a b c

and a statement like this: BTN S2 RPT (3) Macro1

then when S2 is pressed you will get: a a a b c

To avoid this, either enclose the macro or the characters in its definition with
parentheses brackets, i.e.:

BTN S2 RPT (3) (Macro1)

or
BTN S2 RPT (3) Macro1

Where: Macro1 = (a b c)

11. The // comment characters

With the digital chips, you could use // characters instead of REM statements.
These are not supported in Foxy.

	HOTAS COUGAR
	HOTAS COUGAR
	Introduction
	Axis Profiles
	Default
	Save
	Load
	Delete

	Joystick Modes
	Axis Response

	Axis Parameters Section
	Axis Parameter Buttons
	Apply Button
	Retrieve Button

	Axis Setup Tab
	Changing the Axis Setup
	Reversing The Direction of an Axis
	Locking an Axis
	Changing Windows Axes States

	Axes Under Physical Setup
	Axes Under "Enable Windows Axis States" Setup
	Axis Shaping Tab
	Dead Zone Information
	Calibration Center
	Axis Trim
	Curve Setting

	Startup & Calibration Tab
	Startup Options
	Calibration
	Manual Calibration

	Axis Number
	Actions and other options
	Restart Device
	Button & Axis emulation
	Download to device
	Poll device
	Hide / Taskbar Icon functionality
	HOTAS COUGAR

	1. What we have in store for you!
	1.1 Introduction
	1.2 Setting up your controllers
	1.3 GETTING ACQUAINTED WITH the REFERENCE BOOK

	2. UNDERSTANDING THE BASICS
	2.1 Understanding the basics of Thrustmaster Programming
	2.1.1 Introduction
	2.1.2 The concept of HOTAS
	2.1.3 So how do we achieve HOTAS for our flight sims and other games?
	2.1.4 Introducing the joystick file – the basics of programming
	2.1.5 Introducing macros and the macro file – the basics of programming
	2.1.6 How does the joystick file know which macro file contains its macros?
	2.1.7 Summarising what we've learnt so far …
	2.1.8 Downloading the joystick file into our controllers
	2.1.9 Structure of joystick and macro files

	3. Button statements and Macros
	3.1 Button Statements and TM key syntax
	3.2 Thrustmaster keyboard syntax
	3.3 Macros and macro rules
	3.4 Statement Modifiers
	3.5 Slash modifiers
	3.5.1 Increasing the number of programmable positions:
	3.5.1.1 /U, /M, /D - Up, Middle, Down
	3.5.1.2 /I, /O - In, Out

	3.5.2 Separating out macros on a button:
	3.5.2.1 /T - Toggle Slash modifier
	3.5.2.2 Resetting the toggle position
	3.5.2.3 Reversing the direction of toggling
	3.5.2.4 /P, /R - Press and Release

	3.5.3 Repeating and non-repeating characters:
	3.5.3.1 Non repeating characters
	3.5.3.2 /A - Auto-Repeat
	3.5.3.3 /H - Hold

	3.5.4 Slash code rules and hierarchy
	3.5.4.1 Slash code rules
	3.5.4.2 Slash code hierarchy

	3.6 Delay and Repeat statements
	3.6.1 DLY() statements
	3.6.2 RPT() statements

	3.7 Character grouping - using brackets
	3.7.1 () Parentheses
	3.7.2 { } Curly brackets
	3.7.3 < > Angle brackets

	3.8 Working with and defining DirectX (Direct Input) buttons
	3.8.1 USE ALL_DIRECTX_BUTTONS

	3.9 Using KD, KU and USB codes
	3.9.1 KD, KU
	3.9.2 USB programming

	4. HAT Programming
	4.1 Programming the Joystick HATS
	4.1.1 Programmable positions on a hat
	4.1.2 4-way vs. 8 way hats: USE HatID FORCED_CORNERS
	4.1.3 Controlling the mouse with a HAT.
	4.1.4 Setting up a HAT as a Point Of View (POV) HAT
	4.1.5 Using a HAT to emulate the keyboard arrow keys
	4.1.6 Using a HAT to emulate the numerical keypad keys
	4.1.7 How the Compiler converts USE HatID AS statements

	5. Configuration statements
	5.1 Introduction
	5.2 MDEF - Macro DEFinition File
	5.3 RATE
	5.4 S3_LOCK and S3_ UNLOCK
	5.5 Assigning a different button for /I, /O with SHIFTBTN
	5.6 USE HAT SENSITIVITY - Hat corner sensitivity
	5.7 USE T1 SENSITIVITY
	5.8 USE FOXY GRAPHIC and README
	5.9 NULLCHR - Null Character
	5.10 KEYBOARD (AZERTY, QWERTY)
	5.11 Using profiles from the Cougar Control Panel - USE PROFILE
	5.11.1 Some more discussion on profiles

	5.12 Configuration statements described elsewhere in the reference book

	6. Axis Programming
	6.1 Basic principles
	6.1.1 Understanding the difference between Analogue and Digital
	6.1.2 The Cougar Axes

	6.2 Digital Type Statements
	6.2.1 Type 1: repeating character generation
	6.2.1.1 Understanding the - FORCE_MACROS modifier
	6.2.1.2 Important considerations when using FORCE_MACROS

	6.2.2 Type 2: custom character sequence, fixed regions
	6.2.2.1 Understanding the - FORCE_MACROS modifier

	6.2.3 Type 3: held character generation
	6.2.4 Type 4: pulsed character generation
	6.2.5 Type 5: custom character sequence, variable regions
	6.2.5.1 Understanding the - FORCE_MACROS modifier

	6.2.6 Type 6: repeating character generation, variable regions
	6.2.6.1 Understanding the - FORCE_MACROS modifier

	6.2.7 Axis directions: analogue values and digital statements
	6.2.7.1 Analogue Axes values
	6.2.7.1 Analogue axes values
	6.2.7.2 Type 1 Digital axes statements
	6.2.7.3 Type 2 Digital axes statements
	6.2.7.4 Type 3 Digital axes statements
	6.2.7.5 Type 4 Digital axes statements
	6.2.7.6 Type 5 Digital axes statements
	6.2.7.7 Type 6 Digital axes statements

	6.3 Response curves (CURVE)
	6.4 Axis Trimming (TRIM)
	6.5 Disabling Axes
	6.5.1 Disabling and Enabling an axis in flight with LOCK, UNLOCK

	6.6 Axis Mapping (SWAP)
	6.7 Reversing the direction of an axis (REVERSE, FORWARD)
	6.8 The USE AXES_CONFIG statement

	7. Mouse Programming
	7.1 Understanding the Mouse Device and the Microstick
	7.2 USE MTYPE - the simplest way of assigning the mouse to the microstick
	7.3 USE MICROSTICK AS MOUSE
	7.3.1 Assigning other axes to mouse axes

	7.4 Creating a custom mouse on the microstick
	7.5 USE ZERO_MOUSE
	7.6 Programming with Mouse buttons
	7.7 Disabling the default assignment of the mouse to the microstick
	7.8 Advanced Mouse Movement statements
	7.8.1 Defining the screen resolution
	7.8.2 Moving to a specific screen position
	7.8.3 Moving the mouse relative to its current position
	7.8.4 Rotational/Polygon movement

	8. Logical Programming
	8.1 Logical programming - the basics
	8.1.1 Understanding flags

	8.2 Defining logical flags and their button statements
	8.3 Logical Comparators
	8.4 The Logical Toggle
	8.5 Using the logical DELAY and PULSE functions
	8.5.1 The Delay Function
	8.5.2 The Pulse Function

	8.6 Logical programming examples
	8.6.1 Toggling a Type 4 statement on and off
	8.6.2 A slow trim function

	9. Troubleshooting
	9.1 Resetting the controllers
	9.1.1 In a game: EMPTY_BUFFERS and STICK_OFF
	9.1.2 Within Windows

	10. Appendices
	Appendix 1. Summary of Thrustmaster Statements
	Button statements and statement modifiers
	Slash modifiers and Statement modifiers
	Configuration statements
	Axes programming
	Advanced mouse statements
	Logical statements
	Hardware statements

	Appendix 2. Thrustmaster default key syntax
	Appendix 3. USB Keydown and Keyup codes
	Appendix 4. Differences between Original TM files and Cougar files
	1. Changes in key syntax
	2. Slash modifier changes
	3. Statements no longer supported
	4. File extensions, file names
	5. Default actions
	6. Digital vs. Analogue axes
	7. Type 1 digital statements
	8. Throttle not present
	9. Macros - disallowed characters
	10. RPT
	11. The // comment characters

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Gothikka
 /THRUSTMASTEREXTRABOLD
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

